scholarly journals Incorporating evolutionary and threat processes into crop wild relatives conservation

2021 ◽  
Author(s):  
Wolke Tobon-Niedfeldt ◽  
Alicia Mastretta-Yanes ◽  
Tania Urquiza-Haas ◽  
Barbara Goettsch ◽  
Angela Cuervo-Robayo ◽  
...  

Biodiversity conservation calls for spatial explicit approaches to maximize the representation and persistence of genetic diversity given species idiosyncratic threats in mosaic landscapes, but conservation planning methodologies seldom account for this. Here, we introduce a novel approach that uses proxies of genetic diversity to identify conservation areas, applying systematic conservation planning tools to produce hierarchical prioritizations of the landscape. It accounts for: (i) evolutionary processes, including historical and environmental drivers of genetic diversity, and (ii) threat processes, considering taxa specific tolerance to human-modified habitats and their extinction risk status. We illustrate our approach with crop wild relatives (CWR) because their intra- and interspecific diversity is important for crop breeding and food security. Although we focus on Mesoamerican CWR within Mexico, our methodology offers new opportunities to effectively guide conservation and monitoring strategies to safeguard the evolutionary resilience of any taxa, including in regions of complex evolutionary histories and mosaic landscapes.

Author(s):  
Wolke Tobón ◽  
Tania Urquiza-Haas ◽  
Alicia Mastretta Yanes ◽  
Angela Cuervo Robayo ◽  
María Orjuela Restrepo ◽  
...  

Crop wild relatives (CWR) are wild plants that are the ancestors of important crops for human well-being. CWR hold genetic diversity that can be vital for plant breeding programs and the sustainability of agriculture, particularly given global change. Conservation of CWR genetic diversity thus has become a global food security issue, and several countries are actively developing conservation strategies including the generation of a national checklist and inventory of CWR, the assessment of current threat status, the identification of knowledge and conservation, and the establishment of genetic reserves. In this context, Mexico, Guatemala, and El Salvador, in collaboration with experts abroad (University of Birmingham, UK, and IUCN), are working together in a project to contribute towards safeguarding Mesoamerican CWR (http://www.psmesoamerica.org/en/). One important step is to identify CWR conservation area networks framed within the systematic conservation planning approach. However, genetic diversity is generally not addressed during the planning process. As it is unfeasible to sample and perform genetic analyses of hundreds of species due to limited timeframes and conservation budgets, we propose a novel approach to overcome the lack of genetic data. We used two criteria to develop proxies for genetic diversity (PGD): environmental variability, as given by climate, soil and topographic spatially-defined variables; and historic differentiation, as shown by phylogeographic patterns found in other species of the same habitat and region. environmental variability, as given by climate, soil and topographic spatially-defined variables; and historic differentiation, as shown by phylogeographic patterns found in other species of the same habitat and region. We tested our approach by using genomic data from an empirical study of maize wild relatives distributed in Mexico. By combining species distribution models of 120 Mesoamerican CWR taxa and 102 PGD, we delimited areas of potential population differentiation. Furthermore, we considered each taxon's IUCN Red List category and habitat preference, assessed by experts during the project, to determine areas for CWR conservation in Mexico, using the Zonation conservation planning tool. Areas identified as important for CWR in situ conservation are located within sites of high cultural diversity and in areas where agriculture originated and traditional agriculture is ongoing. Also, our study design maximizes the representation of CWR throughout its distribution, thus highlighting the need for comprehensive analysis to encompass the genetic variability of taxa. The results of this work represent a first national and regional guide to promote CWR in situ conservation and sustainable management that contributes towards achievement of the CBD Global Strategy for Plant Conservation, Sustainable Development Goals and Aichi Targets.


Author(s):  
Michael Way ◽  

The genetic diversity found in populations of crop wild relatives is an essential resource for future crop breeding, but populations are at risk of loss before germplasm has been fully conserved in genebanks. This chapter describes best practice for targeting and identifying species, and review knowledge about the variation in wild plant populations to guide the timing of collecting and approaches for genetic sampling. Indicators are presented for seed quality, ripeness and dispersal. Techniques for collection of seed, herbarium vouchers and associated data are reviewed with examples drawn from the Adapting Agriculture to Climate Change (Crop Wild Relative) project. Further research is needed to find optimal approaches for handling of seed to ensure high longevity of seed collections, and improved tools are needed to guide sampling of genetic diversity of crop wild relatives.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1446
Author(s):  
Lorraine Rodriguez-Bonilla ◽  
Karen A. Williams ◽  
Fabian Rodríguez Bonilla ◽  
Daniel Matusinec ◽  
Andrew Maule ◽  
...  

Knowledge of the genetic diversity in populations of crop wild relatives (CWR) can inform effective strategies for their conservation and facilitate utilization to solve agricultural challenges. Two crop wild relatives of the cultivated cranberry are widely distributed in the US. We studied 21 populations of Vaccinium macrocarpon Aiton and 24 populations of Vaccinium oxycoccos L. across much of their native ranges in the US using 32 simple sequence repeat (SSR) markers. We observed high levels of heterozygosity for both species across populations with private alleles ranging from 0 to 26. For V. macrocarpon, we found a total of 613 alleles and high levels of heterozygosity (HO = 0.99, HT = 0.75). We also observed high numbers of alleles (881) and levels of heterozygosity (HO = 0.71, HT = 0.80) in V. oxycoccos (4x). Our genetic analyses confirmed the field identification of a native population of V. macrocarpon on the Okanogan-Wenatchee National Forest in the state of Washington, far outside the previously reported range for the species. Our results will help to inform efforts of the United States Department of Agriculture Agricultural Research Service (USDA-ARS) and the United States Forest Service (USFS) to conserve the most diverse and unique wild cranberry populations through ex situ preservation of germplasm and in situ conservation in designated sites on National Forests.


2017 ◽  
Author(s):  
Ivan Paz-Vinas ◽  
Géraldine Loot ◽  
Virgilio Hermoso ◽  
Charlotte Veyssiere ◽  
Nicolas Poulet ◽  
...  

AbstractIntraspecific diversity informs the demographic and evolutionary histories of populations, and should be a main conservation target. Although approaches exist for identifying relevant biological conservation units, attempts to identify priority conservation areas for intraspecific diversity are scarce, especially within a multi-specific framework. We used neutral molecular data on six European freshwater fish species (Squalius cephalus, Phoxinus phoxinus, Barbatula barbatula, Gobio occitaniae, Leuciscus burdigalensis and Parachondrostoma toxostoma) sampled at the riverscape scale (i.e. the Garonne-Dordogne River basin, France) to determine hot- and cold-spots of genetic diversity, and to identify priority conservation areas using a systematic conservation planning approach. We demonstrate that systematic conservation planning is efficient for identifying priority areas representing a predefined part of the total genetic diversity of a whole landscape. With the exception of private allelic richness, classical genetic diversity indices (allelic richness, genetic uniqueness) were poor predictors for identifying priority areas. Moreover, we identified weak surrogacies among conservation solutions found for each species, implying that conservation solutions are highly species-specific. Nonetheless, we showed that priority areas identified using intraspecific genetic data from multiple species provide more effective conservation solutions than areas identified for single species or on the basis of traditional taxonomic criteria.


2020 ◽  
Vol 180 (4) ◽  
pp. 32-43 ◽  
Author(s):  
L. Yu. Shipilina

Background. Preservation of the entire genetic diversity of the world’s flora is indispensable to the deployment of breeding practice aimed at development and improvement of the existing economically useful plant species and varieties. The in situ conservation approach is recognized as the topmost priority. Therefore, a study of crop wild relatives (CWR) in Kaliningrad Province appears vital to identify the most vulnerable species and enhance their in situ conservation.Materials and methods. Crop wild relatives occurring in Kaliningrad Province were the research target. The WIR and LE herbarium collections, published data, and results of VIR’s plant explorations undertaken in 1974 and 1983 served as the material for the research. Plant species included in the Red Data Books of Kaliningrad Province, Lithuania, Estonia, Poland, etc. were analyzed, and the data from open databases (GBIF, CWR, ILDIS, etc.) and AgroAtlas maps were employed. CWR requiring special conservation measures were identified.Results and conclusions. Kaliningrad Province, Russia, is home to 324 species of CWR. Natural habitats of the 6 most vulnerable plant species were mapped: Vicia dumetorum L., Trifolium rubens L., Chrisaspis spadiceum L., Elytrigia juncea (L.) Nevski, Phleum phleoides (L.) H. Karst., and Allium vineale L. These species fall under the 1st vulnerability category.


2019 ◽  
Vol 17 (2) ◽  
pp. 185-195 ◽  
Author(s):  
Jade Phillips ◽  
Katherine Whitehouse ◽  
Nigel Maxted

AbstractCereal crops are one of the most widely consumed and most valuable crops for humankind. The species have been domesticated for over 10,000 years and as such have lost much of the genetic diversity that is present within their wild relatives. Future breeding efforts will require the use of genetic diversity from crop wild relatives (CWRs) to help improve our cereal crops. This study aims to identify anin situconservation network within the Mediterranean Basin and west Asia for the four cereal crops, barley (HordeumL.), oat (AvenaL.), rye (SecaleL.) and wheat (AegilopsL.,AmblyopyrumL.,TriticumL.). This region is a centre of diversity for these taxa and an area of potentially high genetic diversity, which if left unprotected will not be available for plant breeders to utilize in the future. Presence point data for a total of 90 taxa were collected from GBIF and resulted in 76,343 individual presence points across the 44 countries in the study region. Geographic Information System (GIS) software was used to identify potentialin situreserve networks per crop genepool and for all crops combined. Results indicate a network of 10 locations across the region which would protect over 80% of the taxa. The number one priority reserve is found within the Fertile Crescent region on the border of Israel, Syria and Jordan. This proposed reserve location contains 93 currently protected areas (i.e. National Parks) and as such, it may only be necessary to alter management plans to effectively protect CWR populations. For taxa not found within protected areasex situconservation may be more appropriate and should be implemented as a backup to thein situreserve network.


2018 ◽  
Vol 285 (1877) ◽  
pp. 20172746 ◽  
Author(s):  
Ivan Paz-Vinas ◽  
Géraldine Loot ◽  
Virgilio Hermoso ◽  
Charlotte Veyssière ◽  
Nicolas Poulet ◽  
...  

Intraspecific diversity informs the demographic and evolutionary histories of populations, and should be a main conservation target. Although approaches exist for identifying relevant biological conservation units, attempts to identify priority conservation areas for intraspecific diversity are scarce, especially within a multi-specific framework. We used neutral molecular data on six European freshwater fish species (Squalius cephalus,Phoxinus phoxinus, Barbatula barbatula,Gobio occitaniae,Leuciscus burdigalensisandParachondrostoma toxostoma) sampled at the riverscape scale (i.e. the Garonne-Dordogne river basin, France) to determine hot- and coldspots of genetic diversity, and to identify priority conservation areas using a systematic conservation planning approach. We demonstrate that systematic conservation planning is efficient for identifying priority areas representing a predefined part of the total genetic diversity of a whole landscape. With the exception of private allelic richness (PA), classical genetic diversity indices (allelic richness, genetic uniqueness) were poor predictors for identifying priority areas. Moreover, we identified weak surrogacies among conservation solutions found for each species, implying that conservation solutions are highly species-specific. Nonetheless, we showed that priority areas identified using intraspecific genetic data from multiple species provide more effective conservation solutions than areas identified for single species or on the basis of traditional taxonomic criteria.


2021 ◽  
Author(s):  
Bárbara Goettsch ◽  
Tania Urquiza‐Haas ◽  
Patricia Koleff ◽  
Francisca Acevedo Gasman ◽  
Araceli Aguilar‐Meléndez ◽  
...  

Rice ◽  
2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Evert Thomas ◽  
Eduardo Tovar ◽  
Carolina Villafañe ◽  
José Leonardo Bocanegra ◽  
Rodrigo Moreno

Sign in / Sign up

Export Citation Format

Share Document