scholarly journals Dopamine enhanced auditory perceptual learning in humans via long-term memory consolidation

2021 ◽  
Author(s):  
Ding-lan Tang ◽  
Jun-Yun Zhang ◽  
Xiaoli Li ◽  
Yu-Xuan Zhang

Dopamine is known to modulate sensory plasticity in animal brain, but how it impacts perceptual learning in humans remains largely unknown. In a placebo-controlled, double-blinded training experiment with young healthy adults (both male and female), oral administration of Madopar, a dopamine precursor, during each of multiple training sessions was shown to enhance auditory perceptual learning, particularly in late training sessions. Madopar also enhanced learning and transfer to working memory when tested outside the time widow of drug effect, which appeared to retain for at least 20 days. To test whether such learning modulation was mediated by the dopaminergic working memory network, the same dopamine manipulation was applied to working memory training, but to little influence on learning or transfer. Further, a neural network model of auditory perceptual learning revealed distinctive behavioural modulation patterns for proposed dopaminergic functions in the auditory cortex: trial-by-trial reinforcement signals (reward/reward prediction error and expected reward) and across-session memory consolidation. Only the memory consolidation simulations matched experimental observations. The results thus demonstrate that dopamine modulates human perceptual learning, mostly likely via enhancing memory consolidation over extended time scales.

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A47-A47
Author(s):  
N Sattari ◽  
L Whitehurst ◽  
K Vinces ◽  
S Mednick

Abstract Introduction It is widely accepted that “offline” processes during sleep contributes to memory. Working Memory (WM) capacity, which reflects “online” memory processing, is an important factor influencing cognitive functioning, which declines with age. In younger individuals, a positive association is reported between WM-capacity and declarative memory improvement. Methods We examined the relation between WM and long-term memory consolidation, among younger [N=105, 18-25yr] and older adults (N=119, 60-85yr). Subjects completed an OSPAN WM task, encoded a Word-Paired Association (WPA) task in the morning (Test1), and were tested on the WPA in the afternoon (Test2) after a 90-minute polysomnographically-recorded nap or wake. Half of the subjects were exposed to negatively valenced word-pairs (EWPA) while the other half were exposed to neutral word-pairs (NWPA). Subjects rated valence of the word-pairs at Test1 and Test2. We compared the four groups (young-EWPA, young-NWPA, old-EWPA and old-NWPA) on WM and WPA in both wake and sleep. Results In both wake and sleep, in the WPA, ageXword-condition interaction was found (p=.004). Post-hoc analysis revealed that in wake, younger-EWPA had higher performance (p=.03) than younger-NWPA, however, older-EWPA had lower performance (p=.03) than older-NWPA. Additionally, we found an ageXword-condition interaction whereby youngers showed no change in ratings, while older adults rated word-pairs more positively both in wake (p=.03) and sleep (p=.002) at Test 2. Youngers had higher WM performance (p=.007), also their WM performance was positively associated with WPA both for Neutral (p=.03) and Emotional (p=.01). WM and WPA among older adults was not related. In younger-EWPA, Stage2-sleep-minutes was positively associated to WPA improvement (p=.03) where this association was negative among older-EWPA (p=.02). In older-NWPA, Stage2-sleep-minutes was positively associated with WPA (p=.004). Conclusion Our findings indicate an association between WM and emotionally-salient memory formation that is modulated by age. Older adults, but not younger, showed the emotional bias previously reported. WM was higher in younger adults related to memory improvement. Stage2-sleep was related to memory improvement in both groups, but in opposite directions. In sum, the role of sleep in memory consolidation changes with aging and WM may play a role in this process. Support Fenn et al.,2012


2013 ◽  
Vol 30 (2) ◽  
pp. 105-118 ◽  
Author(s):  
Tracy Packiam Alloway ◽  
Evan Copello

Working memory, our ability to work with information, plays an important role in learning from kindergarten to the college years. In this article, we review the what, the why, and the how of working memory. First, we explore the relationship between working memory, short-term memory, and long-term memory. We also investigate research on the link between whether environmental factors, such as financial background and mother's educational level, affect working memory. In the next section — the why of working memory — we compare the predictive nature of working memory and IQ in learning outcomes. While IQ typically measures the knowledge acquired by the student, working memory measures what they do with that knowledge. Working memory skills are linked to key learning outcomes, including reading and math. In the final section, we present classroom strategies to support working memory. We also review current research on the efficacy of working memory training.


2020 ◽  
Vol 25 (1) ◽  
pp. 63-74
Author(s):  
I.E. Rzhanova ◽  
O.S. Alekseeva ◽  
Yu.A. Burdukova

The article provides an overview of modern works devoted to the study of the relationship between fluid intelligence and working memory. Recently, the world of psychological science has been actively discussing the topic of fluid intelligence and its impact on the academic achievements in childhood. One of the main cognitive characteristics most clearly associated with fluid intelligence is working memory. Working memory is a complex integrative function, in the implementation of which short-term and long-term memory, as well as executive control of attention, are involved. Until now, the debatable question remains, which of the components of working memory is most closely related to fluid intelligence. A number of studies conclude that the role of short-term memory is predominant, while in others executive control is called the most important component. A special place in the study of the relationship between working memory and fluid intelligence is occupied by scientific works which raise the question of the possibilities of improvement of fluid intelligence using working memory training series. In a number of training experiments, it was possible to obtain an improvement in the participants' fluid intelligence indicators after a series of working memory trainings.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


Author(s):  
Angela A. Manginelli ◽  
Franziska Geringswald ◽  
Stefan Pollmann

When distractor configurations are repeated over time, visual search becomes more efficient, even if participants are unaware of the repetition. This contextual cueing is a form of incidental, implicit learning. One might therefore expect that contextual cueing does not (or only minimally) rely on working memory resources. This, however, is debated in the literature. We investigated contextual cueing under either a visuospatial or a nonspatial (color) visual working memory load. We found that contextual cueing was disrupted by the concurrent visuospatial, but not by the color working memory load. A control experiment ruled out that unspecific attentional factors of the dual-task situation disrupted contextual cueing. Visuospatial working memory may be needed to match current display items with long-term memory traces of previously learned displays.


Author(s):  
Ian Neath ◽  
Jean Saint-Aubin ◽  
Tamra J. Bireta ◽  
Andrew J. Gabel ◽  
Chelsea G. Hudson ◽  
...  

2007 ◽  
Author(s):  
Nathan S. Rose ◽  
Joel Myerson ◽  
Henry L. Roediger ◽  
Sandra Hale

2020 ◽  
Author(s):  
Sam Verschooren ◽  
Yoav Kessler ◽  
Tobias Egner

An influential view of working memory (WM) holds that its’ contents are controlled by a selective gating mechanism that allows for relevant perceptual information to enter WM when opened, but shields WM contents from interference when closed. In support of this idea, prior studies using the reference-back paradigm have established behavioral costs for opening and closing the gate between perception and WM. WM also frequently requires input from long-term memory (LTM), but it is currently unknown whether a similar gate controls the selection of LTM representations into WM, and how WM gating of perceptual vs. LTM sources of information relate to each other. To address these key theoretical questions, we devised a novel version of the reference-back paradigm, where participants switched between gating perceptual and LTM information into WM. We observed clear evidence for gate opening and closing costs in both cases. Moreover, the pattern of costs associated with gating and source-switching indicated that perceptual and LTM information is gated into WM via a single gate, and rely on a shared source-selection mechanism. These findings extend current models of WM gating to encompass LTM information, and outline a new functional WM architecture.


Sign in / Sign up

Export Citation Format

Share Document