scholarly journals An Empirical Energy Landscape Reveals Mechanism of Proteasome in Polypeptide Translocation

2021 ◽  
Author(s):  
Rui Fang ◽  
Jason Hon ◽  
Mengying Zhou ◽  
Ying Lu

The ring-like ATPase complexes in the AAA+ family perform diverse cellular functions that require coordination between the conformational transitions of their individual ATPase subunits. How the energy from ATP hydrolysis is captured to perform mechanical work by these coordinated movements is not known. In this study, we developed a novel approach for delineating the nucleotide-dependent free-energy landscape (FEL) of the proteasome's heterohexameric ATPase complex based on complementary structural and kinetic measurements. We used the FEL to simulate the dynamics of the proteasome and quantitatively evaluated the predicted structural and kinetic properties. The FEL model predictions were widely consistent with experimental observations in this and previous studies and suggested novel features of the mechanism of proteasomal ATPase. We find that the cooperative movements of the ATPase subunits result from the design of the ATPase hexamer entailing a unique free-energy minimum for each nucleotide-binding state. ATP hydrolysis dictates the direction of substrate translocation by triggering an energy-dissipating conformational transition of the ATPase complex.

2017 ◽  
Author(s):  
Mizuki Takemoto ◽  
Yongchan Lee ◽  
Ryuichiro Ishitani ◽  
Osamu Nureki

AbstractSecondary active transporters translocate their substrates using the electrochemical potentials of other chemicals, undergoing large-scale conformational changes. Despite extensive structural studies, the atomic details of the transport mechanism still remain elusive. Here we performed a series of all-atom molecular dynamics simulations of the triose-phosphate/phosphate translocator (TPT), which exports organic phosphates in the chloroplast stroma in strict counter exchange with inorganic phosphate (Pi). Biased sampling methods, including string method and umbrella sampling, successfully reproduced the conformational changes between the inward– and outward-facing states, along with the substrate binding. The free energy landscape of this entire TPT transition pathway demonstrated the alternating access and substrate translocation mechanisms, which revealed Pi is relayed by positively charged residues along the transition pathway. Furthermore, the conserved Glu207 functions as a “molecular switch”, linking the local substrate binding and the global conformational transition. Our results provide atomic-detailed insights into the energy coupling mechanism of antiporter.


2021 ◽  
Vol 118 (23) ◽  
pp. e2104598118
Author(s):  
Yi Wang ◽  
Zhuodong Tang ◽  
Hong-Yuan Chen ◽  
Wei Wang ◽  
Nongjian Tao ◽  
...  

The precise measurement of thermodynamic and kinetic properties for biomolecules provides the detailed information for a multitude of applications in biochemistry, biosensing, and health care. However, sensitivity in characterizing the thermodynamic binding affinity down to a single molecule, such as the Gibbs free energy (Gb), enthalpy (Hb), and entropy (Sb), has not materialized. Here, we develop a nanoparticle-based technique to probe the energetic contributions of single-molecule binding events, which introduces a focused laser of optical tweezer to an optical path of plasmonic imaging to accumulate and monitor the transient local heating. This single-molecule calorimeter uncovers the complex nature of molecular interactions and binding characterizations, which can be employed to identify the thermodynamic equilibrium state and determine the energetic components and complete thermodynamic profile of the free energy landscape. This sensing platform promises a breakthrough in measuring thermal effect at the single-molecule level and provides a thorough description of biomolecular specific interactions.


2017 ◽  
Vol 19 (2) ◽  
pp. 1257-1267 ◽  
Author(s):  
Qiang Shao ◽  
Zhijian Xu ◽  
Jinan Wang ◽  
Jiye Shi ◽  
Weiliang Zhu

A combination of a homology modeling technique and an enhanced sampling molecular dynamics simulation implemented using the SITS method is employed to compute a detailed map of the free-energy landscape and explore the conformational transition pathway of B-RAF kinase.


2020 ◽  
Vol 117 (42) ◽  
pp. 26031-26039 ◽  
Author(s):  
Olga Bozovic ◽  
Claudio Zanobini ◽  
Adnan Gulzar ◽  
Brankica Jankovic ◽  
David Buhrke ◽  
...  

While allostery is of paramount importance for protein regulation, the underlying dynamical process of ligand (un)binding at one site, resulting time evolution of the protein structure, and change of the binding affinity at a remote site are not well understood. Here the ligand-induced conformational transition in a widely studied model system of allostery, the PDZ2 domain, is investigated by transient infrared spectroscopy accompanied by molecular dynamics simulations. To this end, an azobenzene-derived photoswitch is linked to a peptide ligand in a way that its binding affinity to the PDZ2 domain changes upon switching, thus initiating an allosteric transition in the PDZ2 domain protein. The subsequent response of the protein, covering four decades of time, ranging from ∼1 ns to ∼μs, can be rationalized by a remodeling of its rugged free-energy landscape, with very subtle shifts in the populations of a small number of structurally well-defined states. It is proposed that structurally and dynamically driven allostery, often discussed as limiting scenarios of allosteric communication, actually go hand-in-hand, allowing the protein to adapt its free-energy landscape to incoming signals.


2019 ◽  
Author(s):  
Xiaohui Wang ◽  
Zhaoxi Sun

<p>Correct calculation of the variation of free energy upon base flipping is crucial in understanding the dynamics of DNA systems. The free energy landscape along the flipping pathway gives the thermodynamic stability and the flexibility of base-paired states. Although numerous free energy simulations are performed in the base flipping cases, no theoretically rigorous nonequilibrium techniques are devised and employed to investigate the thermodynamics of base flipping. In the current work, we report a general nonequilibrium stratification scheme for efficient calculation of the free energy landscape of base flipping in DNA duplex. We carefully monitor the convergence behavior of the equilibrium sampling based free energy simulation and the nonequilibrium stratification and determine the empirical length of time blocks required for converged sampling. Comparison between the performances of equilibrium umbrella sampling and nonequilibrium stratification is given. The results show that nonequilibrium free energy simulation is able to give similar accuracy and efficiency compared with the equilibrium enhanced sampling technique in the base flipping cases. We further test a convergence criterion we previously proposed and it comes out that the convergence behavior determined by this criterion agrees with those given by the time-invariant behavior of PMF and the nonlinear dependence of standard deviation on the sample size. </p>


Sign in / Sign up

Export Citation Format

Share Document