scholarly journals Motion/direction-sensitive thalamic neurons project extensively to the middle layers of primary visual cortex

2021 ◽  
Author(s):  
Jun Zhuang ◽  
Yun Wang ◽  
Naveen D Ouellette ◽  
Emily Turschak ◽  
Rylan Larsen ◽  
...  

The motion/direction-sensitive and location-sensitive neurons are two major functional types in mouse visual thalamus that project to the primary visual cortex (V1). It has been proposed that the motion/direction-sensitive neurons mainly target the superficial layers in V1, in contrast to the location-sensitive neurons which mainly target the middle layers. Here, by imaging calcium activities of motion/direction-sensitive and location-sensitive axons in V1, we find no evidence for these cell-type specific laminar biases at population level. Furthermore, using a novel approach to reconstruct single-axon structures with identified in vivo response types, we show that, at single-axon level, the motion/direction-sensitive axons have middle layer preferences and project more densely to the middle layers than the location-sensitive axons. Overall, our results demonstrate that Motion/direction-sensitive thalamic neurons project extensively to the middle layers of V1, challenging the current view of the thalamocortical organizations in the mouse visual system.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jan C. Frankowski ◽  
Andrzej T. Foik ◽  
Alexa Tierno ◽  
Jiana R. Machhor ◽  
David C. Lyon ◽  
...  

AbstractPrimary sensory areas of the mammalian neocortex have a remarkable degree of plasticity, allowing neural circuits to adapt to dynamic environments. However, little is known about the effects of traumatic brain injury on visual circuit function. Here we used anatomy and in vivo electrophysiological recordings in adult mice to quantify neuron responses to visual stimuli two weeks and three months after mild controlled cortical impact injury to primary visual cortex (V1). We found that, although V1 remained largely intact in brain-injured mice, there was ~35% reduction in the number of neurons that affected inhibitory cells more broadly than excitatory neurons. V1 neurons showed dramatically reduced activity, impaired responses to visual stimuli and weaker size selectivity and orientation tuning in vivo. Our results show a single, mild contusion injury produces profound and long-lasting impairments in the way V1 neurons encode visual input. These findings provide initial insight into cortical circuit dysfunction following central visual system neurotrauma.


2019 ◽  
Author(s):  
Marie Tolkiehn ◽  
Simon R. Schultz

AbstractOrientation tuning in mouse primary visual cortex (V1) has long been reported to have a random or “salt-and-pepper” organisation, lacking the structure found in cats and primates. Laminar in-vivo multi-electrode array recordings here reveal previously elusive structure in the representation of visual patterns in the mouse visual cortex, with temporo-nasally drifting gratings eliciting consistently highest neuronal responses across cortical layers and columns, whilst upward moving gratings reliably evoked the lowest activities. We suggest this bias in direction selectivity to be behaviourally relevant as objects moving into the visual field from the side or behind may pose a predatory threat to the mouse whereas upward moving objects do not. We found furthermore that direction preference and selectivity was affected by stimulus spatial frequency, and that spatial and directional tuning curves showed high signal correlations decreasing with distance between recording sites. In addition, we show that despite this bias in direction selectivity, it is possible to decode stimulus identity and that spatiotemporal features achieve higher accuracy in the decoding task whereas spike count or population counts are sufficient to decode spatial frequencies implying different encoding strategies.Significance statementWe show that temporo-nasally drifting gratings (i.e. opposite the normal visual flow during forward movement) reliably elicit the highest neural activity in mouse primary visual cortex, whereas upward moving gratings reliably evoke the lowest responses. This encoding may be highly behaviourally relevant, as objects approaching from the periphery may pose a threat (e.g. predators), whereas upward moving objects do not. This is a result at odds with the belief that mouse primary visual cortex is randomly organised. Further to this biased representation, we show that direction tuning depends on the underlying spatial frequency and that tuning preference is spatially correlated both across layers and columns and decreases with cortical distance, providing evidence for structural organisation in mouse primary visual cortex.


2020 ◽  
Vol 30 (8) ◽  
pp. 4662-4676
Author(s):  
Kevin J Monk ◽  
Simon Allard ◽  
Marshall G Hussain Shuler

Abstract The primary sensory cortex has historically been studied as a low-level feature detector, but has more recently been implicated in many higher-level cognitive functions. For instance, after an animal learns that a light predicts water at a fixed delay, neurons in the primary visual cortex (V1) can produce “reward timing activity” (i.e., spike modulation of various forms that relate the interval between the visual stimulus and expected reward). Local manipulations to V1 implicate it as a site of learning reward timing activity (as opposed to simply reporting timing information from another region via feedback input). However, the manner by which V1 then produces these representations is unknown. Here, we combine behavior, in vivo electrophysiology, and optogenetics to investigate the characteristics of and circuit mechanisms underlying V1 reward timing in the head-fixed mouse. We find that reward timing activity is present in mouse V1, that inhibitory interneurons participate in reward timing, and that these representations are consistent with a theorized network architecture. Together, these results deepen our understanding of V1 reward timing and the manner by which it is produced.


1996 ◽  
Vol 8 (4) ◽  
pp. 705-730 ◽  
Author(s):  
Zhaoping Li

This paper demonstrates that much of visual motion coding in the primary visual cortex can be understood from a theory of efficient motion coding in a multiscale representation. The theory predicts that cortical cells can have a spectrum of directional indices, be tuned to different directions of motion, and have spatiotemporally separable or inseparable receptive fields (RF). The predictions also include the following correlations between motion coding and spatial, chromatic, and stereo codings: the preferred speed is greater when the cell receptive field size is larger, the color channel prefers lower speed than the luminance channel, and both the optimal speeds and the preferred directions of motion can be different for inputs from different eyes to the same neuron. These predictions agree with experimental observations. In addition, this theory makes predictions that have not been experimentally investigated systematically and provides a testing ground for an efficient multiscale coding framework. These predictions are as follows: (1) if nearby cortical cells of a given preferred orientation and scale prefer opposite directions of motion and have a quadrature RF phase relationship with each other, then they will have the same directional index, (2) a single neuron can have different optimal motion speeds for opposite motion directions of monocular stimuli, and (3) a neuron's ocular dominance may change with motion direction if the neuron prefers opposite directions for inputs from different eyes.


Sign in / Sign up

Export Citation Format

Share Document