scholarly journals Engineering adoptive T cell therapy to co-opt Fas ligand-mediated death signaling in ovarian cancer enhances therapeutic efficacy

2021 ◽  
Author(s):  
Kristin G. Anderson ◽  
Shannon K. Oda ◽  
Breanna M. Bates ◽  
Madison G. Burnett ◽  
Magdalia Rodgers Suarez ◽  
...  

Background: In the U.S., more than 50% of ovarian cancer patients die within 5 years of diagnosis, highlighting the need for innovations such as engineered T cell therapies. Mesothelin (Msln) is an attractive immunotherapy target for this cancer, as it is overexpressed by the tumor and contributes to malignant and invasive phenotypes, making antigen loss disadvantageous to the tumor. We previously showed that adoptively transferred T cells engineered to be Msln-specific (TCR1045) preferentially accumulate within established ovarian tumors, delay tumor growth and significantly prolong survival in the ID8VEGF mouse model. However, T cell persistence and anti-tumor activity were not sustained, and we and others have previously detected FasL in the tumor vasculature and the tumor microenvironment (TME) of human and murine ovarian cancers, which can induce apoptosis in infiltrating lymphocytes expressing Fas receptor (Fas). Methods: To concurrently overcome this mechanism for potential immune evasion and enhance T cell responses, we generated an immunomodulatory fusion protein (IFP) containing the Fas extracellular binding domain fused to a 4-1BB co-stimulatory domain, rather than the natural death domain. T cells engineered to express TCR1045 alone or in combination with the IFP were transferred into ID8VEGF-tumor bearing mice and evaluated for persistence, proliferation, anti-tumor cytokine production, and therapeutic efficacy. Results: Relative to T cells modified only to express TCR1045, T cells engineered to express both TCR1045 and a Fas IFP preferentially persisted in the TME of tumor-bearing mice due to improved T cell proliferation and survival. Moreover, adoptive immunotherapy with IFP+ T cells significantly prolonged survival in tumor-bearing mice, relative to TCR1045 T cells lacking the IFP. Conclusions: Fas/FasL signaling can mediate T cell death in the ovarian cancer microenvironment, as well as induce activation-induced cell death, an apoptotic mechanism responsible for regulating T cell expansion. Upregulation of FasL by tumor cells and tumor vasculature represents a mechanism for protecting growing tumors from attack by tumor-infiltrating lymphocytes. As many solid tumors overexpress FasL, an IFP that converts the Fas-mediated death signal into pro-survival and proliferative signals may provide an opportunity to enhance engineered adoptive T cell therapy against many malignancies.

Leukemia ◽  
2021 ◽  
Author(s):  
Mohamed-Reda Benmebarek ◽  
Bruno L. Cadilha ◽  
Monika Herrmann ◽  
Stefanie Lesch ◽  
Saskia Schmitt ◽  
...  

AbstractTargeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.


Author(s):  
Patrick A. Ott ◽  
Gianpietro Dotti ◽  
Cassian Yee ◽  
Stephanie L. Goff

Adoptive T-cell therapy using tumor-infiltrating lymphocytes (TILs) has demonstrated long-lasting antitumor activity in select patients with advanced melanoma. Cancer vaccines have been used for many decades and have shown some promise but overall relatively modest clinical activity across cancers. Technological advances in genome sequencing capabilities and T-cell engineering have had substantial impact on both adoptive cell therapy and the cancer vaccine field. The ability to identify neoantigens—a class of tumor antigens that is truly tumor specific and encoded by tumor mutations through rapid and relatively inexpensive next-generation sequencing—has already demonstrated the critical importance of these antigens as targets of antitumor-specific T-cell responses in the context of immune checkpoint blockade and other immunotherapies. Therapeutically targeting these antigens with either adoptive T-cell therapy or vaccine approaches has demonstrated early promise in the clinic in patients with advanced solid tumors. Chimeric antigen receptor (CAR) T cells, which are engineered by fusing an antigen-specific, single-chain antibody (scFv) with signaling molecules of the T-cell receptor (TCR)/CD3 complex creating an antibody-like structure on T cells that recognizes antigens independently of major histocompatibility complex (MHC) molecules, have demonstrated remarkable clinical activity in patients with advanced B-cell malignancies, leading to several approvals by the U.S. Food and Drug Administration (FDA).


2016 ◽  
Vol 76 (20) ◽  
pp. 6006-6016 ◽  
Author(s):  
Matthew J. Scheffel ◽  
Gina Scurti ◽  
Patricia Simms ◽  
Elizabeth Garrett-Mayer ◽  
Shikhar Mehrotra ◽  
...  

2017 ◽  
Author(s):  
Kristin G. Anderson ◽  
Breanna M. Bates ◽  
Edison Y. Chiu ◽  
Philip D. Greenberg

Author(s):  
Kristin G. Anderson ◽  
Breanna M. Bates ◽  
Edison Y. Chiu ◽  
Philip D. Greenberg

Sign in / Sign up

Export Citation Format

Share Document