scholarly journals Loss of BCL-3 sensitises colorectal cancer cells to DNA damage, revealing a role for BCL-3 in double strand break repair by homologous recombination

2021 ◽  
Author(s):  
Christopher Parker ◽  
Adam Christian Chambers ◽  
Dustin Flanagan ◽  
Tracey J Collard ◽  
Greg Ngo ◽  
...  

Objective: The proto-oncogene BCL-3 is upregulated in a subset of colorectal cancers (CRC) and increased expression of the gene correlates with poor patient prognosis. The aim is to investigate whether inhibiting BCL-3 can increase the response to DNA damage in CRC.Design: The function of BCL-3 in DNA damage response was studied in vitro using siRNA and CRISPR-Cas9 genome editing and in vivo using Bcl3-/- mice. DNA damage induced by γ-irradiation and/or cisplatin was quantified using H2AX and RAD51 foci, repair pathways investigated using HR/NHEJ assays and treatment with the PARP inhibitor olaparib. Result: Suppression of BCL-3 increases double strand break number and decreases homologous recombination in CRC cells, supported by reduced RAD51 foci number and increased sensitivity to PARP inhibition. Importantly, a similar phenotype is seen in Bcl3-/-mice, where the intestinal crypts of these mice exhibit sensitivity to DNA damage and a greater number of double strand breaks compared to wild type mice. FurthermoreApc.Kras-mutant x Bcl3-/- mice exhibit increased DNA damage and reduced RAD51+ cells compared to their wild type counterparts when treated with cisplatin. Conclusion: This work identifies BCL-3 as a regulator of the cellular response to DNA damage and suggests that elevated BCL-3 expression could increase resistance of tumour cells to DNA damaging agents including radiotherapy. These findings offer a rationale for targeting BCL-3 in CRC as an adjuvant to conventional therapies and suggest that BCL-3 expression in tumours could be a useful biomarker in stratification of rectal cancer patients for neo-adjuvant chemoradiotherapy.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica Buck ◽  
Patrick J. C. Dyer ◽  
Hilary Hii ◽  
Brooke Carline ◽  
Mani Kuchibhotla ◽  
...  

Medulloblastoma is the most common malignant childhood brain tumor, and 5-year overall survival rates are as low as 40% depending on molecular subtype, with new therapies critically important. As radiotherapy and chemotherapy act through the induction of DNA damage, the sensitization of cancer cells through the inhibition of DNA damage repair pathways is a potential therapeutic strategy. The poly-(ADP-ribose) polymerase (PARP) inhibitor veliparib was assessed for its ability to augment the cellular response to radiation-induced DNA damage in human medulloblastoma cells. DNA repair following irradiation was assessed using the alkaline comet assay, with veliparib inhibiting the rate of DNA repair. Veliparib treatment also increased the number of γH2AX foci in cells treated with radiation, and analysis of downstream pathways indicated persistent activation of the DNA damage response pathway. Clonogenicity assays demonstrated that veliparib effectively inhibited the colony-forming capacity of medulloblastoma cells, both as a single agent and in combination with irradiation. These data were then validated in vivo using an orthotopic implant model of medulloblastoma. Mice harboring intracranial D425 medulloblastoma xenografts were treated with vehicle, veliparib, 18 Gy multifractionated craniospinal irradiation (CSI), or veliparib combined with 18 Gy CSI. Animals treated with combination therapy exhibited reduced tumor growth rates concomitant with increased intra-tumoral apoptosis observed by immunohistochemistry. Kaplan–Meier analyses revealed a statistically significant increase in survival with combination therapy compared to CSI alone. In summary, PARP inhibition enhanced radiation-induced cytotoxicity of medulloblastoma cells; thus, veliparib or other brain-penetrant PARP inhibitors are potential radiosensitizing agents for the treatment of medulloblastoma.


Genetics ◽  
2021 ◽  
Author(s):  
Tingting Li ◽  
Ruben C Petreaca ◽  
Susan L Forsburg

Abstract Chromatin remodeling is essential for effective repair of a DNA double strand break. KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DNA double strand break (DSB), including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination. These phenotypes of mst1 are similar to pht1-4KR, a non-acetylatable form of histone variant H2A.Z, which has been proposed to affect resection. Our data suggest that Mst1 functions to direct repair of DSBs towards homologous recombination pathways by modulating resection at the double strand break.


Genetics ◽  
1994 ◽  
Vol 137 (1) ◽  
pp. 41-48 ◽  
Author(s):  
R Silberman ◽  
M Kupiec

Abstract Diploid yeast cells heteroallelic at the HIS3 locus were transformed with a minichromosome (centromeric plasmid) carrying homology to the HIS3 region and containing the same two mutations as were present in the chromosomes. When a double-strand break (DSB) was introduced in the region of homology, an increase in the recombination frequency between heteroalleles (leading to His+ cells) was observed, although the plasmid was unable to donate wild-type information. This induction of recombination was dependent on the presence of homology between the plasmid sequences and the chromosomes. We show evidence for the physical involvement of the plasmid in tripartite recombination events, and we propose models that can explain the interactions between the plasmid-borne and chromosomal-borne alleles. Our results suggest that the mitotic induction of recombination by DNA damage is due to localized initiation of recombination events, and not to a general induction of recombination enzymes in the cell.


2021 ◽  
Author(s):  
Emma K. McLean ◽  
Justin S. Lenhart ◽  
Lyle A. Simmons

Homologous recombination requires the coordinated effort of several proteins to complete break resection, homologous pairing and resolution of DNA crossover structures. RecN is a conserved bacterial protein important of double strand break repair and a member of the Structural Maintenance of Chromosomes (SMC) protein family. Current models in Bacillus subtilis propose that RecN responds to double stranded breaks prior to RecA and end processing suggesting that RecN is among the very first proteins responsible for break detection. Here, we investigate the contribution of RecA and end processing by AddAB to RecN recruitment into repair foci in vivo . Using this approach, we found that recA is required for RecN-GFP focus formation on the nucleoid during normal growth and in response to DNA damage. In the absence of recA function, RecN foci form in a low percentage of cells, RecN localizes away from the nucleoid, and RecN fails to assemble in response to DNA damage. In contrast, we show that the response of RecA-GFP foci to DNA damage is unchanged in the presence or absence of recN . In further support of RecA activity preceding RecN we show that ablation of the double-strand break end processing enzyme addAB results in a failure of RecN to form foci in response to DNA damage. With these results, we conclude that RecA and end processing function prior to RecN establishing a critical step for the recruitment and participation of RecN during DNA break repair in Bacillus subtilis . IMPORTANCE Homologous recombination is important for the repair of DNA double-strand breaks. RecN is a highly conserved protein that has been shown to be important for sister chromatid cohesion and for survival to break-inducing clastogens. Here, we show that the assembly of RecN into repair foci on the bacterial nucleoid requires the end processing enzyme AddAB and the recombinase RecA. In the absence of either recA or end processing RecN-GFP foci are no longer DNA damage inducible and foci form in a subset of cells as large complexes in regions away from the nucleoid. Our results establish the stepwise order of action, where double-strand break end processing and RecA association precede the participation of RecN during break repair in Bacillus subtilis .


PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1009067
Author(s):  
Ana Martínez-Marchal ◽  
Yan Huang ◽  
Maria Teresa Guillot-Ferriols ◽  
Mònica Ferrer-Roda ◽  
Anna Guixé ◽  
...  

Mammalian oogonia proliferate without completing cytokinesis, forming cysts. Within these, oocytes differentiate and initiate meiosis, promoting double-strand break (DSBs) formation, which are repaired by homologous recombination (HR) causing the pairing and synapsis of the homologs. Errors in these processes activate checkpoint mechanisms, leading to apoptosis. At the end of prophase I, in contrast with what is observed in spermatocytes, oocytes accumulate unrepaired DSBs. Simultaneously to the cyst breakdown, there is a massive oocyte death, which has been proposed to be necessary to enable the individualization of the oocytes to form follicles. Based upon all the above-mentioned information, we hypothesize that the apparently inefficient HR occurring in the oocytes may be a requirement to first eliminate most of the oocytes and enable cyst breakdown and follicle formation. To test this idea, we compared perinatal ovaries from control and mutant mice for the effector kinase of the DNA Damage Response (DDR), CHK2. We found that CHK2 is required to eliminate ~50% of the fetal oocyte population. Nevertheless, the number of oocytes and follicles found in Chk2-mutant ovaries three days after birth was equivalent to that of the controls. These data revealed the existence of another mechanism capable of eliminating oocytes. In vitro inhibition of CHK1 rescued the oocyte number in Chk2-/- mice, implying that CHK1 regulates postnatal oocyte death. Moreover, we found that CHK1 and CHK2 functions are required for the timely breakdown of the cyst and to form follicles. Thus, we uncovered a novel CHK1 function in regulating the oocyte population in mice. Based upon these data, we propose that the CHK1- and CHK2-dependent DDR controls the number of oocytes and is required to properly break down oocyte cysts and form follicles in mammals.


2012 ◽  
Vol 13 (1) ◽  
pp. 7 ◽  
Author(s):  
Birgitte B Olsen ◽  
Shih-Ya Wang ◽  
Tina H Svenstrup ◽  
Benjamin PC Chen ◽  
Barbara Guerra

2020 ◽  
Vol 48 (9) ◽  
pp. 4915-4927 ◽  
Author(s):  
Ignacio Alonso-de Vega ◽  
Maria Cristina Paz-Cabrera ◽  
Magdalena B Rother ◽  
Wouter W Wiegant ◽  
Cintia Checa-Rodríguez ◽  
...  

Abstract Post-translational histone modifications and chromatin remodelling play a critical role controlling the integrity of the genome. Here, we identify histone lysine demethylase PHF2 as a novel regulator of the DNA damage response by regulating DNA damage-induced focus formation of 53BP1 and BRCA1, critical factors in the pathway choice for DNA double strand break repair. PHF2 knockdown leads to impaired BRCA1 focus formation and delays the resolution of 53BP1 foci. Moreover, irradiation-induced RPA phosphorylation and focus formation, as well as localization of CtIP, required for DNA end resection, to sites of DNA lesions are affected by depletion of PHF2. These results are indicative of a defective resection of double strand breaks and thereby an impaired homologous recombination upon PHF2 depletion. In accordance with these data, Rad51 focus formation and homology-directed double strand break repair is inhibited in cells depleted for PHF2. Importantly, we demonstrate that PHF2 knockdown decreases CtIP and BRCA1 protein and mRNA levels, an effect that is dependent on the demethylase activity of PHF2. Furthermore, PHF2-depleted cells display genome instability and are mildly sensitive to the inhibition of PARP. Together these results demonstrate that PHF2 promotes DNA repair by homologous recombination by controlling CtIP-dependent resection of double strand breaks.


Sign in / Sign up

Export Citation Format

Share Document