scholarly journals The DNA damage response is required for oocyte cyst breakdown and follicle formation in mice

PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1009067
Author(s):  
Ana Martínez-Marchal ◽  
Yan Huang ◽  
Maria Teresa Guillot-Ferriols ◽  
Mònica Ferrer-Roda ◽  
Anna Guixé ◽  
...  

Mammalian oogonia proliferate without completing cytokinesis, forming cysts. Within these, oocytes differentiate and initiate meiosis, promoting double-strand break (DSBs) formation, which are repaired by homologous recombination (HR) causing the pairing and synapsis of the homologs. Errors in these processes activate checkpoint mechanisms, leading to apoptosis. At the end of prophase I, in contrast with what is observed in spermatocytes, oocytes accumulate unrepaired DSBs. Simultaneously to the cyst breakdown, there is a massive oocyte death, which has been proposed to be necessary to enable the individualization of the oocytes to form follicles. Based upon all the above-mentioned information, we hypothesize that the apparently inefficient HR occurring in the oocytes may be a requirement to first eliminate most of the oocytes and enable cyst breakdown and follicle formation. To test this idea, we compared perinatal ovaries from control and mutant mice for the effector kinase of the DNA Damage Response (DDR), CHK2. We found that CHK2 is required to eliminate ~50% of the fetal oocyte population. Nevertheless, the number of oocytes and follicles found in Chk2-mutant ovaries three days after birth was equivalent to that of the controls. These data revealed the existence of another mechanism capable of eliminating oocytes. In vitro inhibition of CHK1 rescued the oocyte number in Chk2-/- mice, implying that CHK1 regulates postnatal oocyte death. Moreover, we found that CHK1 and CHK2 functions are required for the timely breakdown of the cyst and to form follicles. Thus, we uncovered a novel CHK1 function in regulating the oocyte population in mice. Based upon these data, we propose that the CHK1- and CHK2-dependent DDR controls the number of oocytes and is required to properly break down oocyte cysts and form follicles in mammals.


2019 ◽  
Author(s):  
Ana Martínez-Marchal ◽  
Maria Teresa Guillot ◽  
Mònica Ferrer ◽  
Anna Guixé ◽  
Montserrat Garcia-Caldés ◽  
...  

SummaryMammalian oogonia proliferate without completing cytokinesis producing germ cell cysts. Within these cysts, oocytes differentiate and enter meiosis, promote genome-wide double-strand break (DSBs) formation which repair by homologous recombination leads to synapsis of the homologous chromosomes. Errors in homologous recombination or synapsis trigger the activation of surveillance mechanisms, traditionally called ‘pachytene checkpoint’, to either repair them or send the cells to programmed death. Contrary to what is found in spermatocytes, most oocytes present a remarkable persistence of unrepaired DSBs at pachynema. Simultaneously, there is a massive oocyte death accompanying the oocyte cyst breakdown. This oocyte elimination is thought to be required to properly form the follicles, which constitute the pool of germ cells females will use during their adult life. Based on all the above mentioned, we hypothesized that the apparently inefficient meiotic recombination occurring in mouse oocytes may be required to eliminate most of the oocytes in order to regulate the oocyte number, promote cyst breakdown and follicle formation in mammalian females. To test this idea, we analyzed perinatal ovaries to evaluate the oocyte population, cyst breakdown and follicle formation in control and mutant mice for the effector kinase of the DNA damage response, CHK2. Our results confirm the involvement of CHK2 in the elimination of oocytes that accumulate unrepaired DSBs and show that CHK2 regulates the number of oocytes in fetal ovaries. We also show that CHK2 is required to eliminate oocytes as a result of LINE-1 activation, which was previously shown to be responsible for fetal oocyte loss. Nonetheless, the number of oocytes found in Chk2 mutant ovaries three days after birth was similar to that of control ovaries, suggesting the existence of CHK2-independent mechanisms capable of eliminating oocytes. In vitro inhibition of CHK1 rescued the oocyte number in Chk2 mutant ovaries suggesting that CHK1 regulates postnatal oocyte death. Moreover, both CHK1 and CHK2 functions are required to timely breakdown cyst and form follicles. Altogether, we propose the DNA damage response controls the number of oocytes present perinatally and is required to properly break down oocyte cysts and form follicles, highlighting the importance of the DNA damage response in setting the reserve of oocytes each female will use during their entire lifespan.



Genetics ◽  
2021 ◽  
Author(s):  
Tingting Li ◽  
Ruben C Petreaca ◽  
Susan L Forsburg

Abstract Chromatin remodeling is essential for effective repair of a DNA double strand break. KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DNA double strand break (DSB), including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination. These phenotypes of mst1 are similar to pht1-4KR, a non-acetylatable form of histone variant H2A.Z, which has been proposed to affect resection. Our data suggest that Mst1 functions to direct repair of DSBs towards homologous recombination pathways by modulating resection at the double strand break.



2020 ◽  
Author(s):  
Tingting Li ◽  
Ruben C. Petreaca ◽  
Susan L. Forsburg

AbstractChromatin remodeling is essential for effective repair of a DNA double strand break. KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DSB, including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination. These phenotypes of mst1 are similar to pht1-4KR, a non-acetylatable form of histone variant H2A.Z, which has been proposed to affect resection. These data suggest that Mst1 functions to direct repair of DSBs towards homologous recombination pathways by modulating resection at the double strand break.



Oncogene ◽  
2012 ◽  
Vol 31 (45) ◽  
pp. 4803-4809 ◽  
Author(s):  
C Lemaître ◽  
B Fischer ◽  
A Kalousi ◽  
A-S Hoffbeck ◽  
J Guirouilh-Barbat ◽  
...  


2016 ◽  
Vol 44 (12) ◽  
pp. 5702-5716 ◽  
Author(s):  
David O Onyango ◽  
Sean M Howard ◽  
Kashfia Neherin ◽  
Diana A Yanez ◽  
Jeremy M Stark

Abstract We examined the influence of the tetratricopeptide repeat factor XAB2 on chromosomal break repair, and found that XAB2 promotes end resection that generates the 3′ ssDNA intermediate for homologous recombination (HR). Namely, XAB2 is important for chromosomal double-strand break (DSB) repair via two pathways of HR that require end resection as an intermediate step, end resection of camptothecin (Cpt)-induced DNA damage, and RAD51 recruitment to ionizing radiation induced foci (IRIF), which requires end resection. Furthermore, XAB2 mediates specific aspects of the DNA damage response associated with end resection proficiency: CtIP hyperphosphorylation induced by Cpt and BRCA1 IRIF. XAB2 also promotes histone acetylation events linked to HR proficiency. From truncation mutation analysis, the capacity for XAB2 to promote HR correlates with its ability to form a complex with ISY1 and PRP19, which show a similar influence as XAB2 on HR. This XAB2 complex localizes to punctate structures consistent with interchromatin granules that show a striking adjacent-localization to the DSB marker γH2AX. In summary, we suggest that the XAB2 complex mediates DNA damage response events important for the end resection step of HR, and speculate that its adjacent-localization relative to DSBs marked by γH2AX is important for this function.



2020 ◽  
Vol 21 (21) ◽  
pp. 8039
Author(s):  
Iwona Rzeszutek ◽  
Gabriela Betlej

DNA damage is a common phenomenon promoted through a variety of exogenous and endogenous factors. The DNA damage response (DDR) pathway involves a wide range of proteins, and as was indicated, small noncoding RNAs (sncRNAs). These are double-strand break-induced RNAs (diRNAs) and DNA damage response small RNA (DDRNA). Moreover, RNA binding proteins (RBPs) and RNA modifications have also been identified to modulate diRNA and DDRNA function in the DDR process. Several theories have been formulated regarding the synthesis and function of these sncRNAs during DNA repair; nevertheless, these pathways’ molecular details remain unclear. Here, we review the current knowledge regarding the mechanisms of diRNA and DDRNA biosynthesis and discuss the role of sncRNAs in maintaining genome stability.



2010 ◽  
Vol 30 (14) ◽  
pp. 3582-3595 ◽  
Author(s):  
Girdhar G. Sharma ◽  
Sairei So ◽  
Arun Gupta ◽  
Rakesh Kumar ◽  
Christelle Cayrou ◽  
...  

ABSTRACT The human MOF gene encodes a protein that specifically acetylates histone H4 at lysine 16 (H4K16ac). Here we show that reduced levels of H4K16ac correlate with a defective DNA damage response (DDR) and double-strand break (DSB) repair to ionizing radiation (IR). The defect, however, is not due to altered expression of proteins involved in DDR. Abrogation of IR-induced DDR by MOF depletion is inhibited by blocking H4K16ac deacetylation. MOF was found to be associated with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a protein involved in nonhomologous end-joining (NHEJ) repair. ATM-dependent IR-induced phosphorylation of DNA-PKcs was also abrogated in MOF-depleted cells. Our data indicate that MOF depletion greatly decreased DNA double-strand break repair by both NHEJ and homologous recombination (HR). In addition, MOF activity was associated with general chromatin upon DNA damage and colocalized with the synaptonemal complex in male meiocytes. We propose that MOF, through H4K16ac (histone code), has a critical role at multiple stages in the cellular DNA damage response and DSB repair.



2008 ◽  
Vol 123 (2) ◽  
pp. 457-463 ◽  
Author(s):  
Patrick Danoy ◽  
Stefan Michiels ◽  
Philippe Dessen ◽  
Cécile Pignat ◽  
Thomas Boulet ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document