scholarly journals Data science competition for cross-site delineation and classification of individual trees from airborne remote sensing data

2021 ◽  
Author(s):  
Sarah J Graves ◽  
Sergio Marconi ◽  
Dylan Stewart ◽  
Ira Harmon ◽  
Ben G Weinstein ◽  
...  

Delineating and classifying individual trees in remote sensing data is challenging. Many tree crown delineation methods have difficulty in closed-canopy forests and do not leverage multiple datasets. Methods to classify individual species are often accurate for common species, but perform poorly for less common species and when applied to new sites. We ran a data science competition to help identify effective methods for delineation of individual crowns and classification to determine species identity. This competition included data from multiple sites to assess the methods' ability to generalize learning across multiple sites simultaneously, and transfer learning to novel sites where the methods were not trained. Six teams, representing 4 countries and 9 individual participants, submitted predictions. Methods from a previous competition were also applied and used as the baseline to understand whether the methods are changing and improving over time. The best delineation method was based on an instance segmentation pipeline, closely followed by a Faster R-CNN pipeline, both of which outperformed the baseline method. However, the baseline (based on a growing region algorithm) still performed well as did the Faster R-CNN. All delineation methods generalized well and transferred to novel forests effectively. The best species classification method was based on a two-stage fully connected neural network, which significantly outperformed the baseline (a random forest and Gradient boosting ensemble). The classification methods generalized well, with all teams training their models using multiple sites simultaneously, but the predictions from these trained models generally failed to transfer effectively to a novel site. Classification performance was strongly influenced by the number of field-based species IDs available for training the models, with most methods predicting common species well at the training sites. Classification errors (i.e., species misidentification) were most common between similar species in the same genus and different species that occur in the same habitat. The best methods handled class imbalance well and learned unique spectral features even with limited data. Most methods performed better than baseline in detecting new (untrained) species, especially in the site with no training data. Our experience further shows that data science competitions are useful for comparing different methods through the use of a standardized dataset and set of evaluation criteria, which highlights promising approaches and common challenges, and therefore advances the ecological and remote sensing field as a whole.

2021 ◽  
Vol 13 (9) ◽  
pp. 1715
Author(s):  
Foyez Ahmed Prodhan ◽  
Jiahua Zhang ◽  
Fengmei Yao ◽  
Lamei Shi ◽  
Til Prasad Pangali Sharma ◽  
...  

Drought, a climate-related disaster impacting a variety of sectors, poses challenges for millions of people in South Asia. Accurate and complete drought information with a proper monitoring system is very important in revealing the complex nature of drought and its associated factors. In this regard, deep learning is a very promising approach for delineating the non-linear characteristics of drought factors. Therefore, this study aims to monitor drought by employing a deep learning approach with remote sensing data over South Asia from 2001–2016. We considered the precipitation, vegetation, and soil factors for the deep forwarded neural network (DFNN) as model input parameters. The study evaluated agricultural drought using the soil moisture deficit index (SMDI) as a response variable during three crop phenology stages. For a better comparison of deep learning model performance, we adopted two machine learning models, distributed random forest (DRF) and gradient boosting machine (GBM). Results show that the DFNN model outperformed the other two models for SMDI prediction. Furthermore, the results indicated that DFNN captured the drought pattern with high spatial variability across three penology stages. Additionally, the DFNN model showed good stability with its cross-validated data in the training phase, and the estimated SMDI had high correlation coefficient R2 ranges from 0.57~0.90, 0.52~0.94, and 0.49~0.82 during the start of the season (SOS), length of the season (LOS), and end of the season (EOS) respectively. The comparison between inter-annual variability of estimated SMDI and in-situ SPEI (standardized precipitation evapotranspiration index) showed that the estimated SMDI was almost similar to in-situ SPEI. The DFNN model provides comprehensive drought information by producing a consistent spatial distribution of SMDI which establishes the applicability of the DFNN model for drought monitoring.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6227 ◽  
Author(s):  
Michele Dalponte ◽  
Lorenzo Frizzera ◽  
Damiano Gianelle

An international data science challenge, called National Ecological Observatory Network—National Institute of Standards and Technology data science evaluation, was set up in autumn 2017 with the goal to improve the use of remote sensing data in ecological applications. The competition was divided into three tasks: (1) individual tree crown (ITC) delineation, for identifying the location and size of individual trees; (2) alignment between field surveyed trees and ITCs delineated on remote sensing data; and (3) tree species classification. In this paper, the methods and results of team Fondazione Edmund Mach (FEM) are presented. The ITC delineation (Task 1 of the challenge) was done using a region growing method applied to a near-infrared band of the hyperspectral images. The optimization of the parameters of the delineation algorithm was done in a supervised way on the basis of the Jaccard score using the training set provided by the organizers. The alignment (Task 2) between the delineated ITCs and the field surveyed trees was done using the Euclidean distance among the position, the height, and the crown radius of the ITCs and the field surveyed trees. The classification (Task 3) was performed using a support vector machine classifier applied to a selection of the hyperspectral bands and the canopy height model. The selection of the bands was done using the sequential forward floating selection method and the Jeffries Matusita distance. The results of the three tasks were very promising: team FEM ranked first in the data science competition in Task 1 and 2, and second in Task 3. The Jaccard score of the delineated crowns was 0.3402, and the results showed that the proposed approach delineated both small and large crowns. The alignment was correctly done for all the test samples. The classification results were good (overall accuracy of 88.1%, kappa accuracy of 75.7%, and mean class accuracy of 61.5%), although the accuracy was biased toward the most represented species.


2018 ◽  
Vol 85 ◽  
pp. 367-376 ◽  
Author(s):  
Michele Dalponte ◽  
Lorenzo Frizzera ◽  
Hans Ole Ørka ◽  
Terje Gobakken ◽  
Erik Næsset ◽  
...  

Author(s):  
Sergio Marconi ◽  
Sarah J. Graves ◽  
Dihong Gong ◽  
Morteza Shahriari Nia ◽  
Marion Le Bras ◽  
...  

Ecology has reached the point where data science competitions, in which multiple groups solve the same problem using the same data by different methods, will be productive for advancing quantitative methods for tasks such as species identification from remote sensing images. We ran a competition to help improve three tasks that are central to converting images into information on individual trees: 1) crown segmentation, for identifying the location and size of individual trees; 2) alignment, to match ground truthed trees with remote sensing; and 3) species classification of individual trees. Six teams (composed of 16 individual participants) submitted predictions for one or more tasks. The crown segmentation task proved to be the most challenging, with the highest-performing algorithm yielding only 34% overlap between remotely sensed crowns and the ground truthed trees. However, most algorithms performed better on larger trees. For the alignment task, an algorithm based on minimizing the difference, in terms of both position and tree size, between ground truthed and remotely sensed crowns yielded a perfect alignment. In hindsight, this task was over simplified by only including targeted trees instead of all possible remotely sensed crowns. Several algorithms performed well for species classification, with the highest-performing algorithm correctly classifying 92% of individuals and performing well on both common and rare species. Comparisons of results across algorithms provided a number of insights for improving the overall accuracy in extracting ecological information from remote sensing. Our experience suggests that this kind of competition can benefit methods development in ecology and biology more broadly.


Author(s):  
Sergio Marconi ◽  
Sarah J. Graves ◽  
Dihong Gong ◽  
Morteza Shahriari Nia ◽  
Marion Le Bras ◽  
...  

Ecology has reached the point where data science competitions, in which multiple groups solve the same problem using the same data by different methods, will be productive for advancing quantitative methods for tasks such as species identification from remote sensing images. We ran a competition to help improve three tasks that are central to converting images into information on individual trees: 1) crown segmentation, for identifying the location and size of individual trees; 2) alignment, to match ground truthed trees with remote sensing; and 3) species classification of individual trees. Six teams (composed of 16 individual participants) submitted predictions for one or more tasks. The crown segmentation task proved to be the most challenging, with the highest-performing algorithm yielding only 34% overlap between remotely sensed crowns and the ground truthed trees. However, most algorithms performed better on larger trees. For the alignment task, an algorithm based on minimizing the difference, in terms of both position and tree size, between ground truthed and remotely sensed crowns yielded a perfect alignment. In hindsight, this task was over simplified by only including targeted trees instead of all possible remotely sensed crowns. Several algorithms performed well for species classification, with the highest-performing algorithm correctly classifying 92% of individuals and performing well on both common and rare species. Comparisons of results across algorithms provided a number of insights for improving the overall accuracy in extracting ecological information from remote sensing. Our experience suggests that this kind of competition can benefit methods development in ecology and biology more broadly.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e5843 ◽  
Author(s):  
Sergio Marconi ◽  
Sarah J. Graves ◽  
Dihong Gong ◽  
Morteza Shahriari Nia ◽  
Marion Le Bras ◽  
...  

Ecology has reached the point where data science competitions, in which multiple groups solve the same problem using the same data by different methods, will be productive for advancing quantitative methods for tasks such as species identification from remote sensing images. We ran a competition to help improve three tasks that are central to converting images into information on individual trees: (1) crown segmentation, for identifying the location and size of individual trees; (2) alignment, to match ground truthed trees with remote sensing; and (3) species classification of individual trees. Six teams (composed of 16 individual participants) submitted predictions for one or more tasks. The crown segmentation task proved to be the most challenging, with the highest-performing algorithm yielding only 34% overlap between remotely sensed crowns and the ground truthed trees. However, most algorithms performed better on large trees. For the alignment task, an algorithm based on minimizing the difference, in terms of both position and tree size, between ground truthed and remotely sensed crowns yielded a perfect alignment. In hindsight, this task was over simplified by only including targeted trees instead of all possible remotely sensed crowns. Several algorithms performed well for species classification, with the highest-performing algorithm correctly classifying 92% of individuals and performing well on both common and rare species. Comparisons of results across algorithms provided a number of insights for improving the overall accuracy in extracting ecological information from remote sensing. Our experience suggests that this kind of competition can benefit methods development in ecology and biology more broadly.


2018 ◽  
Author(s):  
Sarah Graves ◽  
Justin Gearhart ◽  
T Trevor Caughlin ◽  
Stephanie Bohlman

Remote sensing data provides unique information about the Earth’s surface that can be used to address ecological questions. Linking high-resolution remote sensing data to field-based ecological data requires methods to identify objects of interest directly on georeferenced remote sensing digital images while in the field. Mapping individual trees with a GPS often has location error and is focused on the position of the tree stem rather than the crown, often creating a mismatch between field data and the pixel information. We describe a mapping process that uses a consumer-grade GPS and tablet computer to spatially match individual trees measured in the field directly to a digital image of their crowns taken from above the canopy. This paper outlines the reasons for using digital field mapping and a summary of the equipment and process, with supplemental material providing a detailed field protocol. As more remote sensing data with a resolution capable of resolving individual trees become available, the opportunities to leverage these data for ecological studies grow. We provide guidelines for those wanting to apply imagery to expand the spatial scale and extent of ecological studies.


Author(s):  
Sarah Graves ◽  
Justin Gearhart ◽  
T Trevor Caughlin ◽  
Stephanie Bohlman

Remote sensing data provides unique information about the Earth’s surface that can be used to address ecological questions. Linking high-resolution remote sensing data to field-based ecological data requires methods to identify objects of interest directly on georeferenced remote sensing digital images while in the field. Mapping individual trees with a GPS often has location error and is focused on the position of the tree stem rather than the crown, often creating a mismatch between field data and the pixel information. We describe a mapping process that uses a consumer-grade GPS and tablet computer to spatially match individual trees measured in the field directly to a digital image of their crowns taken from above the canopy. This paper outlines the reasons for using digital field mapping and a summary of the equipment and process, with supplemental material providing a detailed field protocol. As more remote sensing data with a resolution capable of resolving individual trees become available, the opportunities to leverage these data for ecological studies grow. We provide guidelines for those wanting to apply imagery to expand the spatial scale and extent of ecological studies.


Sign in / Sign up

Export Citation Format

Share Document