scholarly journals Cross-seasonal weather effects interact with breeding conditions to impact reproductive success in an alpine songbird

2021 ◽  
Author(s):  
Devin R de Zwaan ◽  
Anna Drake ◽  
Alaine F Camfield ◽  
Elizabeth C MacDonald ◽  
Kathy Martin

In alpine habitats, fluctuating early-season weather conditions and short breeding seasons limit reproductive opportunities, such that arriving and breeding earlier or later than the optimum may be particularly costly for migratory species. Given early-season energy limitations, the influence of environmental conditions across the annual cycle on breeding phenology may have pronounced fitness consequences, yet our understanding of cross-seasonal dynamics in alpine breeding organisms is severely limited. For an alpine-breeding, migratory population of horned lark (Eremophila alpestris) in northern British Columbia, Canada (54.8N latitude) we assessed how spatially explicit weather conditions from across the annual cycle influenced clutch initiation date and offspring development. We also addressed how cross-seasonal effects on breeding parameters interact to influence reproductive fitness. With 12 years of intensive breeding data and 3 years of migration data from archival light-level geolocators, we used a sliding window approach to identify critical points during the annual cycle where weather events most influenced breeding phenology and offspring development. Consequences for reproductive success were assessed using nest survival simulations. Average clutch initiation varied up to 11 days among years but did not advance from 2003 to 2019. Colder temperatures with greater precipitation at wintering habitats, as well as colder temperatures upon arrival at the breeding site delayed clutch initiation, independent of arrival time. Extreme cold (sub-zero temperatures) within a staging area just prior to arrival at the breeding site carried over to prolong offspring development rate, potentially by influencing parental investment. Nest survival decreased with both later clutch initiation and prolonged offspring development, such that females that nested earlier and fledged offspring at a younger age were up to 45% more likely to reproduce successfully. We demonstrate pronounced carry-over effects acting through mechanisms that influence breeding phenology and offspring development independently. We also highlight the potential importance of staging areas for alpine songbirds, particularly given that environmental conditions are becoming increasingly decoupled across seasons. Understanding the cross-seasonal mechanisms shaping breeding decisions in stochastic environments like the alpine enables more accurate predictions of future individual- and population-level responses to climate change.

2016 ◽  
Vol 283 (1841) ◽  
pp. 20161760 ◽  
Author(s):  
Mathieu Douhard ◽  
Leif Egil Loe ◽  
Audun Stien ◽  
Christophe Bonenfant ◽  
R. Justin Irvine ◽  
...  

The internal predictive adaptive response (internal PAR) hypothesis predicts that individuals born in poor conditions should start to reproduce earlier if they are likely to have reduced performance in later life. However, whether this is the case remains unexplored in wild populations. Here, we use longitudinal data from a long-term study of Svalbard reindeer to examine age-related changes in adult female life-history responses to environmental conditions experienced in utero as indexed by rain-on-snow (ROS utero ). We show that females experiencing high ROS utero had reduced reproductive success only from 7 years of age, independent of early reproduction. These individuals were able to maintain the same annual reproductive success between 2 and 6 years as phenotypically superior conspecifics that experienced low ROS utero . Young females born after high ROS utero engage in reproductive events at lower body mass (about 2.5 kg less) than those born after low ROS utero . The mean fitness of females that experienced poor environmental conditions in early life was comparable with that of females exposed to good environmental conditions in early life. These results are consistent with the idea of internal PAR and suggest that the life-history responses to early-life conditions can buffer the delayed effects of weather on population dynamics.


2021 ◽  
Author(s):  
Michael Le Pepke ◽  
Thomas Kvalnes ◽  
Peter Sjolte Ranke ◽  
Yimen G. Araya-Ajoy ◽  
Jonathan Wright ◽  
...  

1.Environmental conditions during early-life development can have lasting effects on individual quality and fitness. Telomere length (TL) may correlate with early-life conditions and may be an important mediator or biomarker of individual quality or pace-of-life, as periods of increased energy demands can increase telomere attrition due to oxidative stress. Thus, knowledge of the mechanisms that generate variation in TL, and the relation between TL and fitness, is important in understanding the role of telomeres in ecology and life-history evolution. 2.Here, we investigate how environmental conditions and morphological traits are associated with early-life TL and if TL predicts natal dispersal probability or components of fitness in two populations of wild house sparrows (Passer domesticus). 3.We measured morphological traits and blood TL in 2746 nestlings from 20 cohorts (1994-2013) and retrieved data on weather conditions. We monitored population fluctuations, and individual survival and reproductive output using field observations and genetic pedigrees. We then used generalized linear mixed-effects models to test which factors affected TL in early-life, and if TL predicted dispersal propensity, or was associated with recruitment probability, mortality risk, or reproductive success.4.We found a negative effect of population density on TL, but only in one of the populations. There was a curvilinear association between TL and the maximum daily North Atlantic Oscillation (NAO) index during incubation, suggesting that there are optimal weather conditions that result in the longest TL. Dispersers tended to have shorter telomeres than non-dispersers. TL did not predict survival, but we found a tendency for individuals with short telomeres to have higher annual reproductive success.5.Our study showed how early-life TL is shaped by effects of growth, weather conditions and population density, supporting that environmental stressors negatively affect TL in wild populations. In addition, TL may be a mediator or biomarker of individual pace-of-life, with higher dispersal rates and annual reproduction tending to be associated with shorter early-life TL in this study. However, clear associations between early-life TL and individual fitness seems difficult to establish and may differ between different populations in the wild.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Ismail Mansouri ◽  
Mohamed Mounir ◽  
Wafae Squalli ◽  
Laila Elhanafi ◽  
Mohamed Dakki ◽  
...  

The migratory time, breeding chronology, and reproductive success of the European turtle doves (Streptopelia turtur) were studied in Midelt as a high-altitude breeding habitat and Beni Mellal as a low-altitude breeding site from 2015 to 2018 in Morocco. Migration dates, breeding phenology, and breeding success were recorded from March to October for each season. As a result, during four years, arrival dates were earlier at the low breeding site, while departure dates were earlier at the high breeding site. Similarly, breeding phenology from nest building to fledging was early at low-altitude site. On the other hand, with four breeding seasons and 893 nests (467 at Midelt and 426 at Beni Mellal), average breeding success was 57% of chicks at Midelt compared to 60.15% at Beni Mellal. Moreover, at Midelt, 18.89% of eggs and 10.54% of chicks were predated, while at Beni Mellal 21.80% of eggs and 4.65% of chicks were deserted due to human disturbance. As a response, at Midelt breeding period was shorter and shifted to hot periods to ensure better reproductive success. Finally, our results highlight that the turtle dove breeding season is later and shorter at breeding highlands, which might allow this bird to avoid the vigorous climate conditions at mountains and their effect on reproductive success.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Cynthia Reséndiz-Infante ◽  
Gilles Gauthier

AbstractMany avian migrants have not adjusted breeding phenology to climate warming resulting in negative consequences for their offspring. We studied seasonal changes in reproductive success of the greater snow goose (Anser caerulescens atlantica), a long-distance migrant. As the climate warms and plant phenology advances, the mismatch between the timing of gosling hatch and peak nutritive quality of plants will increase. We predicted that optimal laying date yielding highest reproductive success occurred earlier over time and that the seasonal decline in reproductive success increased. Over 25 years, reproductive success of early breeders increased by 42%, producing a steeper seasonal decline in reproductive success. The difference between the laying date producing highest reproductive success and the median laying date of the population increased, which suggests an increase in the selection pressure for that trait. Observed clutch size was lower than clutch size yielding the highest reproductive success for most laying dates. However, at the individual level, clutch size could still be optimal if the additional time required to acquire nutrients to lay extra eggs is compensated by a reduction in reproductive success due to a delayed laying date. Nonetheless, breeding phenology may not respond sufficiently to meet future environmental changes induced by warming temperatures.


Oryx ◽  
2021 ◽  
pp. 1-9
Author(s):  
Johannes H. Fischer ◽  
Heiko U. Wittmer ◽  
Graeme A. Taylor ◽  
Igor Debski ◽  
Doug P. Armstrong

Abstract The population of the recently-described Whenua Hou diving petrel Pelecanoides whenuahouensis comprises c. 200 adults that all breed in a single 0.018 km2 colony in a dune system vulnerable to erosion. The species would therefore benefit from the establishment of a second breeding population through a translocation. However, given the small size of the source population, it is essential that translocations are informed by carefully targeted monitoring data. We therefore modelled nest survival at the remaining population in relation to potential drivers (distance to sea and burrow density of conspecifics and a competitor) across three breeding seasons with varying climatic conditions as a result of the southern oscillation cycle. We also documented breeding phenology and burrow attendance, and measured chicks, to generate growth curves. We estimated egg survival at 0.686, chick survival at 0.890, overall nest survival at 0.612, and found no indication that nest survival was affected by distance to sea or burrow density. Whenua Hou diving petrels laid eggs in mid October, eggs hatched in late November, and chicks fledged in mid January at c. 86% of adult weight. Burrow attendance (i.e. feeds) decreased from 0.94 to 0.65 visits per night as chicks approached fledging. Nest survival and breeding biology were largely consistent among years despite variation in climate. Nest survival estimates will facilitate predictions about future population trends and suitability of prospective translocation sites. Knowledge of breeding phenology will inform the timing of collection of live chicks for translocation, and patterns of burrow attendance combined with growth curves will structure hand-rearing protocols. A tuhinga whakarāpopoto (te reo Māori abstract) can be found in the Supplementary material.


2021 ◽  
Vol 11 (7) ◽  
pp. 3084-3092
Author(s):  
Pablo Capilla‐Lasheras ◽  
Blanca Bondía ◽  
José I. Aguirre

1998 ◽  
Vol 4 (1) ◽  
pp. 3-16 ◽  
Author(s):  
W. R. Skinner ◽  
R. L. Jefferies ◽  
T. J. Carleton ◽  
R. F. Rockwell&dagger K. F. Abraham

Ibis ◽  
2021 ◽  
Author(s):  
Joy Coppes ◽  
Jim‐Lino Kämmerle ◽  
Karl‐Eugen Schroth ◽  
Veronika Braunisch ◽  
Rudi Suchant

Sign in / Sign up

Export Citation Format

Share Document