scholarly journals The influence of weather conditions during gestation on life histories in a wild Arctic ungulate

2016 ◽  
Vol 283 (1841) ◽  
pp. 20161760 ◽  
Author(s):  
Mathieu Douhard ◽  
Leif Egil Loe ◽  
Audun Stien ◽  
Christophe Bonenfant ◽  
R. Justin Irvine ◽  
...  

The internal predictive adaptive response (internal PAR) hypothesis predicts that individuals born in poor conditions should start to reproduce earlier if they are likely to have reduced performance in later life. However, whether this is the case remains unexplored in wild populations. Here, we use longitudinal data from a long-term study of Svalbard reindeer to examine age-related changes in adult female life-history responses to environmental conditions experienced in utero as indexed by rain-on-snow (ROS utero ). We show that females experiencing high ROS utero had reduced reproductive success only from 7 years of age, independent of early reproduction. These individuals were able to maintain the same annual reproductive success between 2 and 6 years as phenotypically superior conspecifics that experienced low ROS utero . Young females born after high ROS utero engage in reproductive events at lower body mass (about 2.5 kg less) than those born after low ROS utero . The mean fitness of females that experienced poor environmental conditions in early life was comparable with that of females exposed to good environmental conditions in early life. These results are consistent with the idea of internal PAR and suggest that the life-history responses to early-life conditions can buffer the delayed effects of weather on population dynamics.

2021 ◽  
Author(s):  
Michael Le Pepke ◽  
Thomas Kvalnes ◽  
Peter Sjolte Ranke ◽  
Yimen G. Araya-Ajoy ◽  
Jonathan Wright ◽  
...  

1.Environmental conditions during early-life development can have lasting effects on individual quality and fitness. Telomere length (TL) may correlate with early-life conditions and may be an important mediator or biomarker of individual quality or pace-of-life, as periods of increased energy demands can increase telomere attrition due to oxidative stress. Thus, knowledge of the mechanisms that generate variation in TL, and the relation between TL and fitness, is important in understanding the role of telomeres in ecology and life-history evolution. 2.Here, we investigate how environmental conditions and morphological traits are associated with early-life TL and if TL predicts natal dispersal probability or components of fitness in two populations of wild house sparrows (Passer domesticus). 3.We measured morphological traits and blood TL in 2746 nestlings from 20 cohorts (1994-2013) and retrieved data on weather conditions. We monitored population fluctuations, and individual survival and reproductive output using field observations and genetic pedigrees. We then used generalized linear mixed-effects models to test which factors affected TL in early-life, and if TL predicted dispersal propensity, or was associated with recruitment probability, mortality risk, or reproductive success.4.We found a negative effect of population density on TL, but only in one of the populations. There was a curvilinear association between TL and the maximum daily North Atlantic Oscillation (NAO) index during incubation, suggesting that there are optimal weather conditions that result in the longest TL. Dispersers tended to have shorter telomeres than non-dispersers. TL did not predict survival, but we found a tendency for individuals with short telomeres to have higher annual reproductive success.5.Our study showed how early-life TL is shaped by effects of growth, weather conditions and population density, supporting that environmental stressors negatively affect TL in wild populations. In addition, TL may be a mediator or biomarker of individual pace-of-life, with higher dispersal rates and annual reproduction tending to be associated with shorter early-life TL in this study. However, clear associations between early-life TL and individual fitness seems difficult to establish and may differ between different populations in the wild.


Author(s):  
Gabriel Pigeon ◽  
Julie Landes ◽  
Marco Festa-Bianchet ◽  
Fanie Pelletier

The rate of senescence may vary among individuals of a species according to individual life histories and environmental conditions. According to the principle of allocation, changes in mortality driven by environmental conditions influence how organisms allocate resources among costly functions. In several vertebrates, environmental conditions during early life impose trade-offs in allocation between early reproduction and maintenance. The effects of conditions experienced during early life on senescence, however, remain poorly documented in wild populations. We examined how several early-life environmental conditions affected reproductive and survival senescence in wild bighorn sheep. We found long-term effects of high population density at birth, precipitations during the winter before birth, and temperature during the winter following birth that decreased survival after 7 years of age. High temperature during the first summer and autumn of life and high Pacific decadal oscillation decreased reproductive success at old ages. However, harsh early-life environment did not influence the rate of senescence in either survival or reproduction. Contrary to our expectation, we found no trade-off between reproductive allocation prior to senescence and senescence. Our results do show that early-life environmental conditions are important drivers of later survival and reproductive success and contribute to intra-specific variation in late-life fitness, but not aging patterns. These conditions should therefore be considered when studying the mechanisms of senescence and the determinants of variation in both survival and reproductive senescence at older ages.


2019 ◽  
Author(s):  
Eve Cooper ◽  
Timothée Bonnet ◽  
Helen Osmond ◽  
Andrew Cockburn ◽  
Loeske E. B. Kruuk

Why do senescence rates of fitness-related traits often vary dramatically? By considering the full ageing trajectories of multiple traits we can better understand how trade-offs and life-history shapes the unique evolution of senescence rates within a population. Here, we examine age-related changes in survival and six reproductive traits in both sexes using a long-term study of a wild population of a cooperatively-breeding songbird, the superb fairy-wren (Malurus cyaneus). We compare ageing patterns between traits by estimating standardized rates of maturation, the age of onset of senescence and rates of senescence, while controlling for confounding factors reflecting individual variability in life-history. We found striking differences in ageing and senescence patterns between survival and reproduction, and between the sexes. In both sexes, rates of survival started to decline from maturity onwards. In contrast, all reproductive traits showed improvements into early adulthood and many showed little or no evidence of senescence. Male reproductive ageing appeared to be driven by sexual selection, with extra-group reproductive success and sexually-selected plumage phenology showing much greater change with age than did within-group reproductive success. We discuss how the superb fairy-wrens’ complex life history may contribute to the disparate ageing patterns in this species.


2021 ◽  
Author(s):  
Janske van de Crommenacker ◽  
Martijn Hammers ◽  
Hannah Louise Dugdale ◽  
Terry Burke ◽  
Jan Komdeur ◽  
...  

1.Environmental conditions experienced during early life may have long-lasting effects on later-life phenotypes and fitness. Individuals experiencing poor early-life conditions may suffer subsequent fitness constraints. Alternatively, individuals may use a strategic ‘Predictive Adaptive Response’ (PAR), whereby they respond – in terms of physiology or life-history strategy – to the conditions experienced in early life to maximise later-life fitness. In particular, the Future Lifespan Expectation (FLE) PAR hypothesis predicts that when poor early-life conditions negatively impact an individual’s physiological state, individuals will accelerate their reproductive schedule to maximise fitness during their shorter predicted lifespan.2.We aimed to measure the impact of early-life conditions and resulting fitness across individual lifetimes to test the predictions of the FLE hypothesis in a wild, long-lived model species. 3.Using a long-term individual-based dataset, we investigated how early-life conditions are linked with subsequent fitness in an isolated population of the Seychelles warbler (Acrocephalus sechellensis). How individuals experience early-life environmental conditions may vary greatly, so we also tested whether telomere length – shorter telomers are a biomarker of an individual’s exposure to stress – can provide an effective measure of the individual-specific impact of early-life conditions. Specifically, under the FLE hypothesis, we would expect shorter telomeres to be associated with accelerated reproduction. 4.Contrary to expectations, shorter juvenile telomere length was not associated with poor early-life conditions, but instead with better conditions, probably as a result of faster juvenile growth. Furthermore, neither juvenile telomere length, nor other measures of early-life conditions, were associated with age of first reproduction or the rate of early-life reproduction in either sex. These results do not support the key prediction of the Future Lifetime Expectation PAR hypothesis. 5.We found no support for the FLE hypothesis. However, at least for males, poor early-life body conditions were associated with lower first year survival and reduced longevity, indicating that poor early-life conditions pose subsequent fitness constraints. Our results also showed that using juvenile telomere length as a measure of early-life conditions requires caution, as it is likely to not only reflect environmental stress but also other processes such as growth.


2018 ◽  
Vol 69 (6) ◽  
pp. 942 ◽  
Author(s):  
Daisuke Goto ◽  
Martin J. Hamel ◽  
Mark A. Pegg ◽  
Jeremy J. Hammen ◽  
Matthew L. Rugg ◽  
...  

Environmental regimes set the timing and location of early life-history events of migratory species with synchronised reproduction. However, modified habitats in human-dominated landscapes may amplify uncertainty in predicting recruitment pulses, impeding efforts to restore habitats invaluable to endemic species. The present study assessed how environmental and spawner influences modulate recruitment variability and persistence of the Missouri River shovelnose sturgeon (Scaphirhynchus platorynchus) under modified seasonal spawning and nursery habitat conditions. Using a spatially explicit individual-based biophysical model, spawning cycle, early life-history processes (dispersal, energetics and survival) and prey production were simulated under incrementally perturbed flow (from –10 to –30%) and temperature (+1 and +2°C) regimes over 50 years. Simulated flow reduction and warming synergistically contracted spring spawning habitats (by up to 51%) and periods (by 19%). Under these conditions, fewer mature females entered a reproductive cycle, and more females skipped spawning, reducing spawning biomass by 20–50%. Many spawners migrated further to avoid increasingly unfavourable habitats, intensifying local density dependence in larval stages and, in turn, increasing size-dependent predation mortality. Diminished egg production (by 20–97%) and weakened recruitment pulses (by 46–95%) ultimately reduced population size by 21–74%. These simulations illustrate that environmentally amplified maternal influences on early life histories can lower sturgeon population stability and resilience to ever-increasing perturbations.


2011 ◽  
Vol 57 (3) ◽  
pp. 375-389 ◽  
Author(s):  
Juan Moreno ◽  
Anders Pape Møller

Abstract Extreme weather conditions occur at an increasing rate as evidenced by higher frequency of hurricanes and more extreme precipitation and temperature anomalies. Such extreme environmental conditions will have important implications for all living organisms through greater frequency of reproductive failure and reduced adult survival. We review examples of reproductive failure and reduced survival related to extreme weather conditions. Phenotypic plasticity may not be sufficient to allow adaptation to extreme weather for many animals. Theory predicts reduced reproductive effort as a response to increased stochasticity. We predict that patterns of natural selection will change towards truncation selection as environmental conditions become more extreme. Such changes in patterns of selection may facilitate adaptation to extreme events. However, effects of selection on reproductive effort are difficult to detect. We present a number of predictions for the effects of extreme weather conditions in need of empirical tests. Finally, we suggest a number of empirical reviews that could improve our ability to judge the effects of extreme environmental conditions on life history.


1977 ◽  
Vol 7 (4) ◽  
pp. 337-350 ◽  
Author(s):  
Jerome L. Weinberger ◽  
Martin Kantor

All children experience trauma. The age, state of development and constitutional factors will determine whether some children will have a traumatic effect. Trauma occurring before the age of three, at a time when the ego has not developed its synthetic and integrative functions, may be reproduced in later life as an isolated symptom, by selected sensations involved in a sensory imprint or screen sensation of the trauma as a simple recording. After the age of three, under the influence of a more mature ego, excessive traumatic stimuli will be integrated and elaborated in symptom formations as phobias or other conditions and extended as part of the total personality. Recurrence in later life is triggered by events related not only to the original experience, but also to the content of its elaboration. The earlier in life the trauma occurs, the more likely that somatic imprints of primitive physiological symptoms would result as an archaic, biological defense or screen sensations. Recurrent sensory imprints or screens may appear as organic illness or functional somatic symptoms. Diagnostically, a detailed early life history is necessary to uncover the presence of a sensory screen memory of a trauma and so avoid diagnostic medical search for organic causation. Case material illustrating the two groups are presented. Indications for psychoanalysis and for supportive psychotherapy are discussed from our theoretical framework as well as from the literature.


2020 ◽  
Author(s):  
Emily N. W. Wheater ◽  
Susan D. Shenkin ◽  
Susana Muñoz Maniega ◽  
Maria Valdés Hernández ◽  
Joanna M. Wardlaw ◽  
...  

AbstractBirth weight, an indicator of fetal growth, is associated with cognitive outcomes in early life and risk of metabolic and cardiovascular disease across the life course. Cognitive ability in early life is predictive of cognitive ability in later life. Brain health in older age, defined by MRI features, is associated with cognitive performance. However, little is known about how variation in normal birth weight impacts on brain structure in later life. In a community dwelling cohort of participants in their early seventies we tested the hypothesis that birthweight is associated with the following MRI features: total brain (TB), grey matter (GM) and normal appearing white matter (NAWM) volumes; whiter matter hyperintensity (WMH) volume; a general factor of fractional anisotropy (gFA) and peak width skeletonised mean diffusivity (PSMD) across the white matter skeleton. We also investigated the associations of birthweight with cortical surface area, volume and thickness. Birthweight was positively associated with TB, GM and NAWM volumes in later life (β ≥ 0.194), and with regional cortical surface area but not gFA, PSMD, WMH volume, or cortical volume or thickness. These positive relationships appear to be explained by larger intracranial volume rather than by age-related tissue atrophy, and are independent of body height and weight in adulthood. This suggests that larger birthweight is linked to increased brain tissue reserve in older life, rather than a resilience to age-related changes in brain structure, such as tissue atrophy or WMH volume.Significance StatementCognitive brain ageing carries a high personal, societal and financial cost and understanding its developmental origins is important for identifying possible preventative strategies. In a sample of older participants from the Lothian Birth Cohort 1936 we were able to explore the neurobiological correlates of birth weight, which is indicative of the fetal experience. We find that higher birth weight is related to larger brain tissue volumes in later life, but does not modify the trajectory of age-related change. This suggests that early life growth confers preserved differentiation, rather than differential preservation with regards to brain reserve. That these effects are detectable into later life indicates that this variable may be valuable biomarker in the epidemiology of ageing.


2021 ◽  
Author(s):  
Niclas U Lundsgaard ◽  
Rebecca L. Cramp ◽  
Craig E Franklin

Determining the contribution of elevated ultraviolet–B radiation (UVBR; 280 — 315 nm) to amphibian population declines is being hindered by a lack of knowledge about how different acute UVBR exposure regimes during early life history stages might affect post–metamorphic stages via long–term carryover effects. We acutely exposed tadpoles of the Australian green tree frog (Litoria caerulea) to a combination of different UVBR irradiances and doses in a multi–factorial experiment, and then reared them to metamorphosis in the absence of UVBR to assess carryover effects in subsequent juvenile frogs. Dose and irradiance of acute UVBR exposure influenced carryover effects into metamorphosis in somewhat opposing manners. Higher doses of UVBR exposure in larvae yielded improved rates of metamorphosis. However, exposure at a high irradiance resulted in frogs metamorphosing smaller in size and in poorer condition than frogs exposed to low and medium irradiance UVBR as larvae. We also demonstrate some of the first empirical evidence of UVBR-induced telomere shortening in vivo, which is one possible mechanism for life–history trade–offs impacting condition post-metamorphosis. These findings contribute to our understanding of how acute UVBR exposure regimes in early life affect later life–history stages, which has implications for how this stressor may shape population dynamics.


2021 ◽  
Author(s):  
◽  
Benjamin Moginie

<p>Identifying sources of variation in individual reproductive success is crucial to our understanding of population dynamics and evolutionary ecology. In many systems, the determinants of success are not well known. Where species have parental care, for example, determinants of success can be particularly challenging to partition between parents and offspring. In this thesis I investigate drivers and consequences of variable life histories, for a small reef fish that exhibits male parental care (the common triplefin Forsterygion lapillum). I examined the influence of individual life history, phenotype and behaviour on (1) the performance of recently settled juveniles, and (2) the reproductive success adult males.  I made field-based observations of adult males during the breeding season, measured their phenotypic traits (body size and condition) and used their otoliths to reconstruct life history characteristics (hatch dates and mean growth rates). My life history trait reconstructions suggested two alternate pathways to ’success’ for adult males. Successful males hatched earlier and therefore had a developmental ’head start’ over less successful males (i.e., males with eggs > male territory holders without eggs > floaters). Alternatively, males can apparently achieve success by growing faster: for males born in the same month, those with eggs grew faster than those with territories and no eggs, and both groups grew faster than floaters. These results suggest that accelerated growth rate may mediate the effects of a later hatch date, and that both hatch dates and growth rates influence the success of adult males, likely through proximate effects on individual phenotypes.  Identifying sources of variation in individual reproductive success is crucial to our understanding of population dynamics and evolutionary ecology. In many systems, the determinants of success are not well known. Where species have parental care, for example, determinants of success can be particularly challenging to partition between parents and offspring. Male parental care is common among fishes, where resources such as high quality territories and mates often may be limiting. In such systems, individual success of offspring may result from distinct life history pathways that are influenced by both parental effects (e.g., timing of reproduction) and by the offspring themselves (e.g., ’personalities’). These pathways, in turn, can induce phenotypic variation and affect success later in life. The drivers and consequences of variable life histories are not well understood in the context of reproductive success.  In this thesis I investigate drivers and consequences of variable life histories, for a small reef fish that exhibits male parental care (the common triplefin Forsterygion lapillum). I examined the influence of individual life history, phenotype and behaviour on (1) the performance of recently settled juveniles, and (2) the reproductive success adult males. I made field-based observations of adult males during the breeding season, measured their phenotypic traits (body size and condition) and used their otoliths to reconstruct life history characteristics (hatch dates and mean growth rates). Some males showed no evidence of territorial defence and were defined as ’floaters’; others defended territories, and a subset of these also had nests with eggs present. Adult male body size was significantly higher for males that defended breeding territories, and body condition was significantly higher for the males that had eggs (i.e., had successfully courted females). My otolith-based reconstructions of life history traits suggested two alternate pathways to ’success’ for adult males. Successful males hatched earlier and therefore had a developmental ’head start’ over less successful males (i.e., males with eggs > male territory holders without eggs > floaters). Alternatively, males can apparently achieve success by growing faster: for males born in the same month, those with eggs grew faster than those with territories and no eggs, and both groups grew faster than floaters. These results suggest that accelerated growth rate may mediate the effects of a later hatch date, and that both hatch dates and growth rates influence the success of adult males, likely through proximate effects on individual phenotypes.  I evaluated the effects of variable life history in a complimentary lab-based study. Specifically, I manipulated the developmental environments (feeding regime and temperature) for young fish and evaluated the direct effects on life history traits and phenotypes. Then, I conducted an assay to quantify the indirect effects of developmental environment, life history traits, and phenotypes on aggression and performance of young fish. These developmental environments did not have a clear, overall effect on juvenile phenotype or performance (i.e. behavioural aggression and the ability to dominate a resource). Instead, individuals (irrespective of developmental environment) that grew faster and/or longer pelagic larval durations had increased odds of dominating a limited resource. I attributed the non-significant direct effect of developmental environment to within-treatment mortality and variation among individuals in terms of their realised access to food (i.e., dominance hierarchies were apparent in rearing chambers, suggesting a non-uniform access to food). Fish that were more likely to dominate a resource were also more aggressive (i.e., more likely to engage in chasing behaviours). Fish that were larger and more aggressive established territories that were deemed to be of higher ’quality’ (inferred from percent cover of cobble resources). Overall, this study suggests a complex interplay between social systems, phenotype and life history. Developmental environments may influence phenotypes, although behavioural differences among individuals may moderate that effect, contributing to additional variation in phenotypes and life history traits which, in turn, shape the success of individuals.  Collectively, my thesis emphasises the consequences of life history variability on success at multiple life stages. These results may be relevant to other species that exhibit male parental care or undergo intense competition for space during early life stages. In addition, my results highlight interactions between life history, phenotype and behaviour that can have important implications for population dynamics and evolutionary ecology.</p>


Sign in / Sign up

Export Citation Format

Share Document