scholarly journals Maternal and paternal sugar consumption interact to modify offspring life history and physiology

2021 ◽  
Author(s):  
Tara-Lyn Camilleri-Carter ◽  
Damian K Dowling ◽  
Rebecca Robker ◽  
Matthew Piper

Intergenerational effects on offspring phenotypes occur in response to variation in both maternal and paternal nutrition. Because the combined maternal and paternal effects are rarely considered together however, their relative contributions, and the capacity for interactions between parental diets to shape offspring life history and physiology are not understood. To address this, we altered sucrose levels of adult fruit flies (Drosophila melanogaster) prior to mating, across two generations, producing parent-parent and parent-offspring combinations that were either matched or mismatched in dietary sucrose. We then measured lifespan, fecundity, body mass, and triglyceride levels in parents and offspring. We reveal complex non-additive interactions, that involve diets of each parent and offspring to shape offspring phenotypes, but the effects were generally not consistent with an adaptive response to parental diet. Notably, we find that interacting parental flies (sires and dams) lived longer when their sucrose treatments were matched, but they produced shorter-lived offspring.

2020 ◽  
Vol 71 (1) ◽  
pp. 1-20
Author(s):  
Indrikis A. Krams ◽  
Ronalds Krams ◽  
Priit Jõers ◽  
Māris Munkevics ◽  
Giedrius Trakimas ◽  
...  

Abstract The elemental composition of organisms belongs to a suite of functional traits that change during development in response to environmental conditions. However, associations between adaptive variations in developmental speed and elemental body composition are not well understood. We compared body mass, elemental body composition, food uptake and fat metabolism of Drosophila melanogaster male fruit flies in relation to their larval development speed. Slowly developing flies had higher body carbon concentration than rapidly developing and intermediate flies. Rapidly developing flies had the highest body nitrogen concentration, while slowly developing flies had higher body nitrogen levels than flies with intermediate speed of development. The carbon-to-nitrogen ratio was therefore lower in rapidly developing flies than in slow and intermediate flies. We also had a group of flies grown individually and their body mass and elemental body composition were similar to those of rapidly developing individuals grown in groups. This suggests that rapid growth is not suppressed by stress. Feeding rates were lowest in the slowly developing flies. The amount of triacylglycerides was highest in the flies with intermediate developmental speed which optimizes development under many climatic conditions. Although low food intake slows down developmental speed and the accumulation of body fat reserves in slowly developing flies, their phenotype conceivably facilitates survival under higher stochasticity of their environments. Rapidly developing flies grew with less emphasis on storage build-up. Overall, this study shoes that a combination of bet-hedging, adaptive tracking and developmental plasticity enables fruit flies to respond adaptively to environmental uncertainty.


2011 ◽  
Vol 8 (1) ◽  
pp. 71-73 ◽  
Author(s):  
Urban Friberg ◽  
Andrew D. Stewart ◽  
William R. Rice

Males and females usually invest asymmetrically in offspring. In species lacking parental care, females influence offspring in many ways, while males only contribute genetic material via their sperm. For this reason, maternal effects have long been considered an important source of phenotypic variation, while paternal effects have been presumed to be absent or negligible. The recent surge of studies showing trans-generational epigenetic effects questions this assumption, and indicates that paternal effects may be far more important than previously appreciated. Here, we test for sex-linked paternal effects in Drosophila melanogaster on a life-history trait, and find substantial support for both X- and Y-linked effects.


2018 ◽  
Author(s):  
Joseph B. Deas ◽  
Leo Blondel ◽  
Cassandra G. Extavour

ABSTRACTAncestral environmental conditions can impact descendant phenotypes through a variety of epigenetic mechanisms. Previous studies on transgenerational effects in Drosophila melanogaster suggest that parental nutrition may affect the body size, developmental duration, and egg size of the next generation. However, it is unknown whether these effects on phenotype remain stable across generations, or if specific generations have general responses to ancestral diet. In the current study, we examined the effect on multiple life history phenotypes of changing diet quality across three generations. Our analysis revealed unforeseen patterns in how phenotypes respond to dietary restriction. Our generalized linear model showed that when considering only two generations, offspring phenotypes were primarily affected by their own diet, and to a lesser extent by the diet of their parents or the interaction between the two generations. Surprisingly, however, when considering three generations, offspring phenotypes were primarily impacted by their grandparents’ diet and their own diet. Interactions amongst different generations’ diets affected development time, egg volume, and pupal mass more than ovariole number or wing length. Further, pairwise comparisons of diet groups from the same generation revealed commonalities in strong responses to rich vs. poor diet: ovariole number, pupal mass, and wing length responded more strongly to poor diet than to rich diet, while development time responded strongly to both rich and poor diets. To improve investigations into the mechanisms and consequences of transgenerational, epigenetic inheritance, future studies should closely examine how phenotypes change across a higher number of generations, and consider responses to broader variability in diet treatments.


2019 ◽  
Vol 286 (1897) ◽  
pp. 20182778 ◽  
Author(s):  
Joseph B. Deas ◽  
Leo Blondel ◽  
Cassandra G. Extavour

Ancestral environmental conditions can impact descendant phenotypes through a variety of epigenetic mechanisms. Previous studies on transgenerational effects in Drosophila melanogaster suggest that parental nutrition may affect the body size, developmental duration and egg size of the next generation. However, it is unknown whether these effects on phenotype remain stable across generations, or if specific generations have general responses to ancestral diet. In the current study, we examined the effect on multiple life-history phenotypes of changing diet quality across three generations. Our analysis revealed unforeseen patterns in how phenotypes respond to dietary restriction. Our generalized linear model showed that when considering only two generations, offspring phenotypes were primarily affected by their own diet, and to a lesser extent by the diet of their parents or the interaction between the two generations. Surprisingly, however, when considering three generations, offspring phenotypes were primarily impacted by their grandparents' diet and their own diet. Interactions among different generations’ diets affected development time, egg volume and pupal mass more than ovariole number or wing length. Furthermore, pairwise comparisons of diet groups from the same generation revealed commonalities in strong responses to rich versus poor diet: ovariole number, pupal mass and wing length responded more strongly to poor diet than to rich diet, while development time responded strongly to both rich and poor diets. To improve investigations into the mechanisms and consequences of transgenerational, epigenetic inheritance, future studies should closely examine how phenotypes change across a higher number of generations, and consider responses to broader variability in diet treatments.


Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 1867-1878 ◽  
Author(s):  
Emmanuel Gauthier ◽  
Christophe Tatout ◽  
Hubert Pinon

Abstract The I factor (IF) is a LINE-like transposable element from Drosophila melanogaster. IF is silenced in most strains, but under special circumstances its transposition can be induced and correlates with the appearance of a syndrome of female sterility called hybrid dysgenesis. To elucidate the relationship between IF expression and female sterility, different transgenic antisense and/or sense RNAs homologous to the IF ORF1 have been expressed. Increasing the transgene copy number decreases both the expression of an IF-lacZ fusion and the intensity of the female sterile phenotype, demonstrating that IF expression is correlated with sterility. Some transgenes, however, exert their repressive abilities not only through a copy number-dependent zygotic effect, but also through additional maternal and paternal effects that may be induced at the DNA and/or RNA level. Properties of the maternal effect have been detailed: (1) it represses hybrid dysgenesis more efficiently than does the paternal effect; (2) its efficacy increases with both the transgene copy number and the aging of sterile females; (3) it accumulates slowly over generations after the transgene has been established; and (4) it is maintained for at least two generations after transgene removal. Conversely, the paternal effect increases only with female aging. The last two properties of the maternal effect and the genuine existence of a paternal effect argue for the occurrence, in the IF regulation pathway, of a cellular memory transmitted through mitosis, as well as through male and female meiosis, and akin to epigenetic phenomena.


Evolution ◽  
2020 ◽  
Author(s):  
Eevi Savola ◽  
Clara Montgomery ◽  
Fergal M. Waldron ◽  
Katy M. Monteith ◽  
Pedro Vale ◽  
...  

Parasitology ◽  
1927 ◽  
Vol 19 (1) ◽  
pp. 86-99 ◽  
Author(s):  
F. J. Brown

1. Crepidostomum farionis inhabits the gall bladder, as well as the intestine and pyloric caeca, of the trout and grayling.2. The life history of Crepidostomum farionis has been worked out and is based on the similarity of organisation of the cercaria, encysted larval trematode and the adult.3. The first intermediate hosts in the life history of this trematode are Pisidium amnicum (Müll.) and Sphaerium corneum (L.) though the latter is unusual.4. The second intermediate host is the larva of the mayfly, Ephemera danica (Müll.).5. There are two generations of rediae, the first gives rise to daughter rediae, which in turn produce cercariae.6. The rediae are characterised by the absence of ambulatory processes and a functional intestine.7. The cercaria (n.sp.) possesses “eye spots,” stylet and gland cells (salivary?), and the excretory vesicle is tube-shaped.8. The excretory system of the redia and the cercaria has been worked out in detail.9. The relation of the parasites to their respective hosts is discussed. On account of the need for further observations definite conclusions are held over for a later paper.


Sign in / Sign up

Export Citation Format

Share Document