scholarly journals Defining the components of the miRNA156-SPL-miR172 aging pathway in pea and their expression relative to changes in leaf morphology

2021 ◽  
Author(s):  
J.K. Vander Schoor ◽  
V. Hecht ◽  
G. Aubert ◽  
J. Burstin ◽  
J.L. Weller

AbstractThe timing of developmental phase transitions is crucial for plant reproductive success, and two microRNAs (miRNA), miR156 and miR172, are implicated in the control of these changes, together with their respective SQUAMOSA promoter binding-like (SPL) and APETALA2 (AP2)-like targets. While their patterns of regulation have been studied in a growing range of species, to date they have not been examined in pea (Pisum sativum), an important legume crop and model species. We analysed the recently-released pea genome and defined nine miR156, 21 SPL, four miR172, and five AP2-like genes. Phylogenetic analysis of the SPL genes in pea, Medicago and Arabidopsis confirmed the eight previously defined clades, and identified a ninth potentially legume-specific SPL clade in pea and Medicago. Among the PsSPL, 14 contain a miR156 binding site and all five AP2-like transcription factors in pea include a miR172 binding site. Phylogenetic relationships, expression levels and temporal expression changes identified PsSPL2a/3a/3c/6b/9a/9b/13b/21, PsmiR156d/j and PsmiR172a/d as the most likely of these genes to participate in phase change in pea. Comparisons with leaf morphology suggests that vegetative phase change is unlikely to be definitively marked by a change in leaflet number. In addition, the timing of FT gene induction suggests that the shift from the juvenile to the adult vegetative phase may occur within fourteen days in plants grown under inductive conditions, and calls into question the contribution of miR172/AP2 to the floral transition. This work provides the first insight into the nature of vegetative phase change in pea, and an important foundation for future functional studies.

2004 ◽  
Vol 52 (2) ◽  
pp. 281 ◽  
Author(s):  
Dean R. Williams ◽  
Philip J. Smethurst ◽  
Brad M. Potts

Many eucalypts are heteroblastic, exhibiting a distinct change in leaf morphology through their ontogeny. The physiological and chronological age at which the tree switches from the production of juvenile foliage to adult foliage (vegetative phase change) can be under strong genetic control and influenced to some extent by environment. We studied the effect of nitrogen (N) and phosphorus (P) fertiliser on the growth and vegetative phase change in Eucalyptus nitens. Whilst neither fertiliser treatment affected tree height at 3.5 years of age, P fertiliser significantly reduced the length of the juvenile vegetative phase. In contrast, N, but not P, has been shown to promote flowering. These findings support the argument that vegetative and reproductive maturity are genetically and physiologically uncoupled in Eucalyptus.


2011 ◽  
Vol 77 (3) ◽  
pp. 181-188 ◽  
Author(s):  
Ronald A. Balsamo ◽  
Joseph A.J. Orkwiszewski

Background and Aims: Leaf morphology, anatomy, degree of lignification, and tensile strength were studied during vegetative phase change in an inbred line of <em>Zea mays</em> (OH43 x W23) to determine factors that influence mechanical properties during development. Methods: Tensometer, light microscopy, histochemistry. Key results: Mature leaf length increased linearly with plant development, peaked at leaves 7 and 8 (corresponding to the onset of the adult phase) and then declined. Leaf width was stable for leaves 1 through 3, increased to leaf 7, remained stable to leaf 10, and then declined through leaf 13. Lamina thickness was highest for leaf 1 and decreased throughout development. Leaf failure load to width ratio and failure load to thickness ratio increased with development suggesting that changes in leaf morphology during development do not entirely account for increases in failure load. Histochemical analyses revealed that leaf tensile strength correlates with percent lignification and the onset of anatomical adult features at various developmental stages. Conclusions: These data demonstrate that in <em>Zea mays</em> lignification of the midrib parenchyma and epidermis may be directly correlated with increased tensile strength associated with phase change from juvenility to adulthood. Failure load and resultant tensile strength values are primarily determined by the percent tissue lignification and the appearance of leaf architectural characters that are associated with the transition from the juvenile to the adult phase. Increased mechanical stability that occurs during the phase transition from juvenility to adulthood may signify a fundamental change in strategy for an individual plant from rapid growth (survival) to reproduction.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Li Yang ◽  
Mingli Xu ◽  
Yeonjong Koo ◽  
Jia He ◽  
R Scott Poethig

Nutrients shape the growth, maturation, and aging of plants and animals. In plants, the juvenile to adult transition (vegetative phase change) is initiated by a decrease in miR156. In Arabidopsis, we found that exogenous sugar decreased the abundance of miR156, whereas reduced photosynthesis increased the level of this miRNA. This effect was correlated with a change in the timing of vegetative phase change, and was primarily attributable to a change in the expression of two genes, MIR156A and MIR156C, which were found to play dominant roles in this transition. The glucose-induced repression of miR156 was dependent on the signaling activity of HEXOKINASE1. We also show that the defoliation-induced increase in miR156 levels can be suppressed by exogenous glucose. These results provide a molecular link between nutrient availability and developmental timing in plants, and suggest that sugar is a component of the leaf signal that mediates vegetative phase change.


2021 ◽  
Author(s):  
Jim P. Fouracre ◽  
Jia He ◽  
Victoria J. Chen ◽  
Simone Sidoli ◽  
R. Scott Poethig

SummaryHow organisms control when to transition between different stages of development is a key question in biology. In plants, epigenetic silencing by Polycomb repressive complex 1 (PRC1) and PRC2 plays a crucial role in promoting developmental transitions, including from juvenile-to-adult phases of vegetative growth. It is well established that PRC1/2 repress the master regulator of vegetative phase change, miR156, leading to the transition to adult growth, but how this process in temporally regulated is unknown. Here we investigate whether transcription factors in the VIVIPAROUS/ABI3-LIKE (VAL) gene family provide the temporal signal for the epigenetic repression of miR156. Exploiting a novel val1 allele, we found that VAL1 and VAL2 redundantly regulate vegetative phase change by controlling the overall level, rather than temporal dynamics, of miR156 expression. Furthermore, we discovered that VAL1 and VAL2 also act independently of miR156 to control this important developmental transition.


Sign in / Sign up

Export Citation Format

Share Document