scholarly journals A flow-based latent state generative model of neural population responses to natural images

2021 ◽  
Author(s):  
Mohammad Bashiri ◽  
Edgar Y. Walker ◽  
Konstantin-Klemens Lurz ◽  
Akshay Kumar Jagadish ◽  
Taliah Muhammad ◽  
...  

AbstractWe present a joint deep neural system identification model for two major sources of neural variability: stimulus-driven and stimulus-conditioned fluctuations. To this end, we combine (1) state-of-the-art deep networks for stimulus-driven activity and (2) a flexible, normalizing flow-based generative model to capture the stimulus-conditioned variability including noise correlations. This allows us to train the model end-to-end without the need for sophisticated probabilistic approximations associated with many latent state models for stimulus-conditioned fluctuations. We train the model on the responses of thousands of neurons from multiple areas of the mouse visual cortex to natural images. We show that our model outperforms previous state-of-the-art models in predicting the distribution of neural population responses to novel stimuli, including shared stimulus-conditioned variability. Furthermore, it successfully learns known latent factors of the population responses that are related to behavioral variables such as pupil dilation, and other factors that vary systematically with brain area or retinotopic location. Overall, our model accurately accounts for two critical sources of neural variability while avoiding several complexities associated with many existing latent state models. It thus provides a useful tool for uncovering the interplay between different factors that contribute to variability in neural activity.

2017 ◽  
Author(s):  
Charles A. Michelson ◽  
Jonathan W. Pillow ◽  
Eyal Seidemann

ABSTRACTWhile performing challenging perceptual tasks such as detecting a barely visible target, our perceptual reports vary across presentations of identical stimuli. This perceptual variability is presumably caused by neural variability in our brains. How much of the neural variability that correlates with the perceptual variability is present in the primary visual cortex (V1), the first cortical processing stage of visual information? To address this question, we recorded neural population responses from V1 using voltage-sensitive dye imaging while monkeys performed a challenging reaction-time visual detection task. We found that V1 responses in the period leading to the decision correspond more closely to the monkey’s report than to the visual stimulus. These results, together with a simple computational model that allows one to quantify the captured choice-related variability, suggest that most this variability is present in V1, and that areas outside of V1 contain relatively little independent choice-related variability.


2020 ◽  
Author(s):  
Yuyao Yang ◽  
Shuangjia Zheng ◽  
Shimin Su ◽  
Jun Xu ◽  
Hongming Chen

Fragment based drug design represents a promising drug discovery paradigm complimentary to the traditional HTS based lead generation strategy. How to link fragment structures to increase compound affinity is remaining a challenge task in this paradigm. Hereby a novel deep generative model (AutoLinker) for linking fragments is developed with the potential for applying in the fragment-based lead generation scenario. The state-of-the-art transformer architecture was employed to learn the linker grammar and generate novel linker. Our results show that, given starting fragments and user customized linker constraints, our AutoLinker model can design abundant drug-like molecules fulfilling these constraints and its performance was superior to other reference models. Moreover, several examples were showcased that AutoLinker can be useful tools for carrying out drug design tasks such as fragment linking, lead optimization and scaffold hopping.


2019 ◽  
Author(s):  
Wengong Jin ◽  
Regina Barzilay ◽  
Tommi S Jaakkola

The problem of accelerating drug discovery relies heavily on automatic tools to optimize precursor molecules to afford them with better biochemical properties. Our work in this paper substantially extends prior state-of-the-art on graph-to-graph translation methods for molecular optimization. In particular, we realize coherent multi-resolution representations by interweaving trees over substructures with the atom-level encoding of the original molecular graph. Moreover, our graph decoder is fully autoregressive, and interleaves each step of adding a new substructure with the process of resolving its connectivity to the emerging molecule. We evaluate our model on multiple molecular optimization tasks and show that our model outperforms previous state-of-the-art baselines by a large margin.


Author(s):  
Jorge F. Lazo ◽  
Aldo Marzullo ◽  
Sara Moccia ◽  
Michele Catellani ◽  
Benoit Rosa ◽  
...  

Abstract Purpose Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since it indicates the path that the endoscope should follow. In order to obtain an accurate segmentation of the hollow lumen, this paper presents an automatic method based on convolutional neural networks (CNNs). Methods The proposed method is based on an ensemble of 4 parallel CNNs to simultaneously process single and multi-frame information. Of these, two architectures are taken as core-models, namely U-Net based in residual blocks ($$m_1$$ m 1 ) and Mask-RCNN ($$m_2$$ m 2 ), which are fed with single still-frames I(t). The other two models ($$M_1$$ M 1 , $$M_2$$ M 2 ) are modifications of the former ones consisting on the addition of a stage which makes use of 3D convolutions to process temporal information. $$M_1$$ M 1 , $$M_2$$ M 2 are fed with triplets of frames ($$I(t-1)$$ I ( t - 1 ) , I(t), $$I(t+1)$$ I ( t + 1 ) ) to produce the segmentation for I(t). Results The proposed method was evaluated using a custom dataset of 11 videos (2673 frames) which were collected and manually annotated from 6 patients. We obtain a Dice similarity coefficient of 0.80, outperforming previous state-of-the-art methods. Conclusion The obtained results show that spatial-temporal information can be effectively exploited by the ensemble model to improve hollow lumen segmentation in ureteroscopic images. The method is effective also in the presence of poor visibility, occasional bleeding, or specular reflections.


Author(s):  
Masoumeh Zareapoor ◽  
Jie Yang

Image-to-Image translation aims to learn an image from a source domain to a target domain. However, there are three main challenges, such as lack of paired datasets, multimodality, and diversity, that are associated with these problems and need to be dealt with. Convolutional neural networks (CNNs), despite of having great performance in many computer vision tasks, they fail to detect the hierarchy of spatial relationships between different parts of an object and thus do not form the ideal representative model we look for. This article presents a new variation of generative models that aims to remedy this problem. We use a trainable transformer, which explicitly allows the spatial manipulation of data within training. This differentiable module can be augmented into the convolutional layers in the generative model, and it allows to freely alter the generated distributions for image-to-image translation. To reap the benefits of proposed module into generative model, our architecture incorporates a new loss function to facilitate an effective end-to-end generative learning for image-to-image translation. The proposed model is evaluated through comprehensive experiments on image synthesizing and image-to-image translation, along with comparisons with several state-of-the-art algorithms.


2020 ◽  
Vol 34 (05) ◽  
pp. 7277-7284
Author(s):  
Thayne T. Walker ◽  
Nathan R. Sturtevant ◽  
Ariel Felner

The main idea of conflict-based search (CBS), a popular, state-of-the-art algorithm for multi-agent pathfinding is to resolve conflicts between agents by systematically adding constraints to agents. Recently, CBS has been adapted for new domains and variants, including non-unit costs and continuous time settings. These adaptations require new types of constraints. This paper introduces a new automatic constraint generation technique called bipartite reduction (BR). BR converts the constraint generation step of CBS to a surrogate bipartite graph problem. The properties of BR guarantee completeness and optimality for CBS. Also, BR's properties may be relaxed to obtain suboptimal solutions. Empirical results show that BR yields significant speedups in 2k connected grids over the previous state-of-the-art for both optimal and suboptimal search.


Sign in / Sign up

Export Citation Format

Share Document