scholarly journals Generalized and Sub-Optimal Bipartite Constraints for Conflict-Based Search

2020 ◽  
Vol 34 (05) ◽  
pp. 7277-7284
Author(s):  
Thayne T. Walker ◽  
Nathan R. Sturtevant ◽  
Ariel Felner

The main idea of conflict-based search (CBS), a popular, state-of-the-art algorithm for multi-agent pathfinding is to resolve conflicts between agents by systematically adding constraints to agents. Recently, CBS has been adapted for new domains and variants, including non-unit costs and continuous time settings. These adaptations require new types of constraints. This paper introduces a new automatic constraint generation technique called bipartite reduction (BR). BR converts the constraint generation step of CBS to a surrogate bipartite graph problem. The properties of BR guarantee completeness and optimality for CBS. Also, BR's properties may be relaxed to obtain suboptimal solutions. Empirical results show that BR yields significant speedups in 2k connected grids over the previous state-of-the-art for both optimal and suboptimal search.

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1133
Author(s):  
Shanzhi Gu ◽  
Mingyang Geng ◽  
Long Lan

The aim of multi-agent reinforcement learning systems is to provide interacting agents with the ability to collaboratively learn and adapt to the behavior of other agents. Typically, an agent receives its private observations providing a partial view of the true state of the environment. However, in realistic settings, the harsh environment might cause one or more agents to show arbitrarily faulty or malicious behavior, which may suffice to allow the current coordination mechanisms fail. In this paper, we study a practical scenario of multi-agent reinforcement learning systems considering the security issues in the presence of agents with arbitrarily faulty or malicious behavior. The previous state-of-the-art work that coped with extremely noisy environments was designed on the basis that the noise intensity in the environment was known in advance. However, when the noise intensity changes, the existing method has to adjust the configuration of the model to learn in new environments, which limits the practical applications. To overcome these difficulties, we present an Attention-based Fault-Tolerant (FT-Attn) model, which can select not only correct, but also relevant information for each agent at every time step in noisy environments. The multihead attention mechanism enables the agents to learn effective communication policies through experience concurrent with the action policies. Empirical results showed that FT-Attn beats previous state-of-the-art methods in some extremely noisy environments in both cooperative and competitive scenarios, much closer to the upper-bound performance. Furthermore, FT-Attn maintains a more general fault tolerance ability and does not rely on the prior knowledge about the noise intensity of the environment.


2019 ◽  
Author(s):  
Wengong Jin ◽  
Regina Barzilay ◽  
Tommi S Jaakkola

The problem of accelerating drug discovery relies heavily on automatic tools to optimize precursor molecules to afford them with better biochemical properties. Our work in this paper substantially extends prior state-of-the-art on graph-to-graph translation methods for molecular optimization. In particular, we realize coherent multi-resolution representations by interweaving trees over substructures with the atom-level encoding of the original molecular graph. Moreover, our graph decoder is fully autoregressive, and interleaves each step of adding a new substructure with the process of resolving its connectivity to the emerging molecule. We evaluate our model on multiple molecular optimization tasks and show that our model outperforms previous state-of-the-art baselines by a large margin.


2020 ◽  
Vol 8 (1) ◽  
pp. 33-41
Author(s):  
Dr. S. Sarika ◽  

Phishing is a malicious and deliberate act of sending counterfeit messages or mimicking a webpage. The goal is either to steal sensitive credentials like login information and credit card details or to install malware on a victim’s machine. Browser-based cyber threats have become one of the biggest concerns in networked architectures. The most prolific form of browser attack is tabnabbing which happens in inactive browser tabs. In a tabnabbing attack, a fake page disguises itself as a genuine page to steal data. This paper presents a multi agent based tabnabbing detection technique. The method detects heuristic changes in a webpage when a tabnabbing attack happens and give a warning to the user. Experimental results show that the method performs better when compared with state of the art tabnabbing detection techniques.


Author(s):  
Jorge F. Lazo ◽  
Aldo Marzullo ◽  
Sara Moccia ◽  
Michele Catellani ◽  
Benoit Rosa ◽  
...  

Abstract Purpose Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since it indicates the path that the endoscope should follow. In order to obtain an accurate segmentation of the hollow lumen, this paper presents an automatic method based on convolutional neural networks (CNNs). Methods The proposed method is based on an ensemble of 4 parallel CNNs to simultaneously process single and multi-frame information. Of these, two architectures are taken as core-models, namely U-Net based in residual blocks ($$m_1$$ m 1 ) and Mask-RCNN ($$m_2$$ m 2 ), which are fed with single still-frames I(t). The other two models ($$M_1$$ M 1 , $$M_2$$ M 2 ) are modifications of the former ones consisting on the addition of a stage which makes use of 3D convolutions to process temporal information. $$M_1$$ M 1 , $$M_2$$ M 2 are fed with triplets of frames ($$I(t-1)$$ I ( t - 1 ) , I(t), $$I(t+1)$$ I ( t + 1 ) ) to produce the segmentation for I(t). Results The proposed method was evaluated using a custom dataset of 11 videos (2673 frames) which were collected and manually annotated from 6 patients. We obtain a Dice similarity coefficient of 0.80, outperforming previous state-of-the-art methods. Conclusion The obtained results show that spatial-temporal information can be effectively exploited by the ensemble model to improve hollow lumen segmentation in ureteroscopic images. The method is effective also in the presence of poor visibility, occasional bleeding, or specular reflections.


2021 ◽  
Vol 37 (1-4) ◽  
pp. 1-30
Author(s):  
Vincenzo Agate ◽  
Alessandra De Paola ◽  
Giuseppe Lo Re ◽  
Marco Morana

Multi-agent distributed systems are characterized by autonomous entities that interact with each other to provide, and/or request, different kinds of services. In several contexts, especially when a reward is offered according to the quality of service, individual agents (or coordinated groups) may act in a selfish way. To prevent such behaviours, distributed Reputation Management Systems (RMSs) provide every agent with the capability of computing the reputation of the others according to direct past interactions, as well as indirect opinions reported by their neighbourhood. This last point introduces a weakness on gossiped information that makes RMSs vulnerable to malicious agents’ intent on disseminating false reputation values. Given the variety of application scenarios in which RMSs can be adopted, as well as the multitude of behaviours that agents can implement, designers need RMS evaluation tools that allow them to predict the robustness of the system to security attacks, before its actual deployment. To this aim, we present a simulation software for the vulnerability evaluation of RMSs and illustrate three case studies in which this tool was effectively used to model and assess state-of-the-art RMSs.


Sign in / Sign up

Export Citation Format

Share Document