scholarly journals Nanodomain-mediated lateral sorting drives polarization of the small GTPase ROP2 in the plasma membrane of root hair cells

2021 ◽  
Author(s):  
Vanessa Aphaia Fiona Fuchs ◽  
Philipp Denninger ◽  
Milan Župunski ◽  
Yvon Jaillais ◽  
Ulrike Engel ◽  
...  

Formation of root hairs involves the targeted recruitment of the cellular growth machinery to the root hair initiation domain (RHID), a specialized site at the plasma membrane (PM) of trichoblast cells. Early determinants in RHID establishment are small GTPases of the Rho-of-plants (ROP) protein family, which are required for polarization of downstream effectors, membrane modification and targeted secretion during tip growth. It remains, however, not fully understood how ROP GTPases themselves are polarized. To investigate the mechanism underlying ROP2 recruitment, we employed Variable Angle Epifluorescence Microscopy (VAEM) and exploited mCitrine fluorophore blinking for single molecule localization, particle tracking and super-resolved imaging of the trichoblast plasma membrane. We observed the association of mCit-ROP2 within distinct membrane nanodomains, whose polar occurrence at the RHID was dependent on the presence of the RopGEF GEF3, and found a gradual, localized decrease of mCit-ROP2 protein mobility that preceded polarization. We provide evidence for a step-wise model of ROP2 polarization that involves (i) an initial non-polar recruitment to the plasma membrane via interactions with anionic phospholipids, (ii) ROP2 assembly into membrane nanodomains independent of nucleotide-binding state and, sub-sequently, (iii) lateral sorting into the RHID, driven by GEF3-mediated localized reduction of ROP2 mobility.

2010 ◽  
Vol 38 (2) ◽  
pp. 723-728 ◽  
Author(s):  
Viktor Žárský ◽  
Martin Potocký

The Rho/Rop small GTPase regulatory module is central for initiating exocytotically ACDs (active cortical domains) in plant cell cortex, and a growing array of Rop regulators and effectors are being discovered in plants. Structural membrane phospholipids are important constituents of cells as well as signals, and phospholipid-modifying enzymes are well known effectors of small GTPases. We have shown that PLDs (phospholipases D) and their product, PA (phosphatidic acid), belong to the regulators of the secretory pathway in plants. We have also shown that specific NOXs (NADPH oxidases) producing ROS (reactive oxygen species) are involved in cell growth as exemplified by pollen tubes and root hairs. Most plant cells exhibit several distinct plasma membrane domains (ACDs), established and maintained by endocytosis/exocytosis-driven membrane protein recycling. We proposed recently the concept of a ‘recycling domain’ (RD), uniting the ACD and the connected endosomal recycling compartment (endosome), as a dynamic spatiotemporal entity. We have described a putative GTPase–effector complex exocyst involved in exocytic vesicle tethering in plants. Owing to the multiplicity of its Exo70 subunits, this complex, along with many RabA GTPases (putative recycling endosome organizers), may belong to core regulators of RD organization in plants.


2015 ◽  
Vol 27 (3) ◽  
pp. 806-822 ◽  
Author(s):  
Ming-Juan Lei ◽  
Qi Wang ◽  
Xiaolin Li ◽  
Aimin Chen ◽  
Li Luo ◽  
...  

2021 ◽  
Author(s):  
Lenka Kuběnová ◽  
Michaela Tichá ◽  
Jozef Šamaj ◽  
Miroslav Ovečka

AbstractArabidopsis root hairs develop as long tubular extensions from the rootward pole of trichoblasts and exert polarized tip growth. The establishment and maintenance of root hair polarity is a complex process involving the local apical production of reactive oxygen species (ROS) generated by NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN C/ROOT HAIR DEFECTIVE 2 (AtRBOHC/RHD2). It has been shown that loss-of-function rhd2 mutants have short root hairs that are unable to elongate by tip growth, and this phenotype was fully complemented by GFP-RHD2 expressed under the RHD2 promoter. However, the spatiotemporal mechanism of AtRBOHC/RHD2 subcellular redistribution and delivery to the plasma membrane (PM) during root hair initiation and tip growth are still unclear. Here, we used advanced microscopy for detailed qualitative and quantitative analysis of vesicular compartments containing GFP-RHD2 and characterization of their movements in developing bulges and growing root hairs. These compartments, identified by an independent marker such as the trans-Golgi network (TGN), deliver GFP-RHD2 to the apical PM domain, the extent of which correlates with the stage of root hair formation. Movements of TGN/early endosomes, but not late endosomes, were affected in the bulging domains of the rhd2-1 mutant. Finally, we reveal that accumulation in the growing tip, docking, and incorporation of TGN compartments containing GFP-RHD2 to the apical PM of root hairs requires structural sterols. These results help clarify the mechanism of polarized AtRBOHC/RHD2 targeting, maintenance, and recycling at the apical PM domain, coordinated with different developmental stages of root hair initiation and growth.One-sentence summaryAdvanced microscopy and quantitative analysis of vesicular TGN compartments revealed that delivering GFP-RHD2 to the apical plasma membrane domains of developing bulges and growing root hairs requires structural sterols.


Science ◽  
2019 ◽  
Vol 364 (6435) ◽  
pp. 57-62 ◽  
Author(s):  
Matthieu Pierre Platre ◽  
Vincent Bayle ◽  
Laia Armengot ◽  
Joseph Bareille ◽  
Maria del Mar Marquès-Bueno ◽  
...  

Rho guanosine triphosphatases (GTPases) are master regulators of cell signaling, but how they are regulated depending on the cellular context is unclear. We found that the phospholipid phosphatidylserine acts as a developmentally controlled lipid rheostat that tunes Rho GTPase signaling in Arabidopsis. Live superresolution single-molecule imaging revealed that the protein Rho of Plants 6 (ROP6) is stabilized by phosphatidylserine into plasma membrane nanodomains, which are required for auxin signaling. Our experiments also revealed that the plasma membrane phosphatidylserine content varies during plant root development and that the level of phosphatidylserine modulates the quantity of ROP6 nanoclusters induced by auxin and hence downstream signaling, including regulation of endocytosis and gravitropism. Our work shows that variations in phosphatidylserine levels are a physiological process that may be leveraged to regulate small GTPase signaling during development.


1989 ◽  
Vol 67 (8) ◽  
pp. 2401-2408 ◽  
Author(s):  
Anne Mie C. Emons

Cell wall microfibril alignment in the tubular portion of Equisetum hyemale root hairs is helicoidal. Lamellae of helicoidal texture are deposited from tip to base; thus, different microfibril orientations are aligned with the plasma membrane successively. Zones with constant mean microfibril orientation are about 300 μm long. In any such zone of dry-cleaned, shadowed preparations, the frequency of microfibrils at the proximal end is 5 to 7 microfibrils per micrometre, which decreases to 0 at the distal end. The orientation of microfibrils of the underlying lamella, the microfibril frequency of which is 5 to 7/μm throughout, is the same as the microfibril orientation of the neighbouring distal lamella. Microfibrils of the cell wall are randomly oriented in the hair dome. Microtubule alignment in these root hairs was examined by means of freeze substitution. In the extreme tip of the root hair, microtubules run parallel to the plasma membrane and transverse to the long axis of the hair; the hemisphere of the hair contains randomly oriented microtubules. From extreme tip to base of the hair dome, microtubules become more and more axially aligned, and remain axially oriented in the hair tube. Further down the hair, where microfibril alignment is transverse and microfibrils are actively being deposited, microtubules still run in the axial direction. The observations emphasize the involvement of microtubles in root hair tip morphogenesis, but not in determining the alignment of the microfibrils in the hair tube.


2006 ◽  
Vol 401 (2) ◽  
pp. 377-390 ◽  
Author(s):  
Pascale G. Charest ◽  
Richard A. Firtel

Small GTPases are involved in the control of diverse cellular behaviours, including cellular growth, differentiation and motility. In addition, recent studies have revealed new roles for small GTPases in the regulation of eukaryotic chemotaxis. Efficient chemotaxis results from co-ordinated chemoattractant gradient sensing, cell polarization and cellular motility, and accumulating data suggest that small GTPase signalling plays a central role in each of these processes as well as in signal relay. The present review summarizes these recent findings, which shed light on the molecular mechanisms by which small GTPases control directed cell migration.


2021 ◽  
Author(s):  
Matthew J Brody ◽  
Tanya A. Baldwin ◽  
Arasakumar Subramani ◽  
Onur Kanisicak ◽  
Ronald J Vagnozzi ◽  
...  

S-palmitoylation is a reversible lipid modification that regulates trafficking, localization, activity, and/or stability of protein substrates by serving as a fatty acid anchor to cell membranes. However, S-palmitoylation-dependent control of signal transduction in cardiomyocytes and its effects on cardiac physiology are not well understood. We performed an in vivo gain-of-function screen of zinc finger Asp-His-His-Cys (zDHHC) family S-acyl transferases that catalyze S-palmitoylation and identified the Golgi-localized enzyme zDHHC3 as a critical regulator of cardiac maladaptation. The closely-related enzyme, zDHHC7, also induced severe cardiomyopathy but this effect was not observed with overexpression of plasma membrane enzyme zDHHC5, endoplasmic reticulum enzyme zDHHC6, or Golgi enzyme zDHHC13. To identify effectors that may underlie zDHHC3-induced cardiomyopathy we performed quantitative site-specific S-acyl proteomics in zDHHC3-overexpressing cells that revealed the small GTPase Rac1 as a novel substrate. We generated cardiomyocyte-specific transgenic mice overexpressing zDHHC3, which develop severe cardiac disease. Cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice are preceded by enhanced S-palmitoylation of Rac1 and induction of additional Rho family small GTPases including RhoA, Cdc42, and the Rho family-specific chaperone RhoGDI. In contrast, transgenic mice overexpressing an enzymatically-dead mutant of zDHHC3 do not exhibit this profound induction of RhoGTPase signaling or develop cardiac disease. Rac1 S-palmitoylation, plasma membrane localization, activity, and downstream hypertrophic signaling were substantially increased in zDHHC3 overexpressing hearts. Taken together, these data suggest inhibition of zDHHC3/7 S-acyl transferase activity at the cardiomyocyte Golgi or disruption of Rac1 S-palmitoylation as novel therapeutic strategies to treat cardiac disease or other diseases associated with enhanced RhoGTPase signaling.


2020 ◽  
Author(s):  
Tomoko Hirano ◽  
Kazuo Ebine ◽  
Takashi Ueda ◽  
Takumi Higaki ◽  
Takahiro Nakayama ◽  
...  

AbstractA root hair is a long tubular protrusion from a root hair cell established via tip growth, which is accomplished by the polarized deposition of membranous and cell wall components at the root hair apex accompanied by simultaneous hardening of the shank. The polarized secretion of materials to the root hair apex is well investigated; however, little is known about the deposition of inner cell wall materials at the root hair shank. We have previously reported that phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2)/ROP10 signaling is required for the regulation of cortical microtubule construction and the deposition of inner cell wall components at the root hair shank during hardening. To unravel the alternate secretion mechanism for delivery of the inner cell wall components to root hair shank, here, we demonstrate that root hair-specific Qa-SNARE, SYP123, localizes to the subapical zone and shank of elongating root hairs in Arabidopsis. SYP123-mediated root hair elongation was inhibited by the FAB1 inhibitor YM201636, and inhibition of PtdIns(3,5)P2 production impaired the plasma membrane localization of SYP123. We also showed that SYP123 forms a SNARE complex with VAMP727 on the plasma membrane, and syp123 and vamp727 mutants exhibited lower cell wall stiffness in the root hair shank because of impaired deposition of inner cell wall components. These results indicate that SYP123/VAMP727-mediated secretion is involved in the transport of inner cell wall components for hardening of the root hair shank.


2019 ◽  
Author(s):  
Philipp Denninger ◽  
Anna Reichelt ◽  
Vanessa A. F. Schmidt ◽  
Dietmar G. Mehlhorn ◽  
Lisa Y. Asseck ◽  
...  

SUMMARYRoot hairs are tubular protrusions of the root epidermis that significantly enlarge the exploitable soil volume in the rhizosphere. Trichoblasts, the cell type responsible for root hair formation, switch from cell elongation to tip growth through polarization of the growth machinery to a pre-defined root hair initiation domain (RHID) at the plasma membrane. The emergence of this polar domain resembles the establishment of cell polarity in other eukaryotic systems [1–3]. Rho-type GTPases of plants (ROPs) are among the first molecular determinants of the RHID [4, 5] and later play a central role in polar growth [6]. Numerous studies have elucidated mechanisms that position the RHID in the cell [7–9] or regulate ROP activity [10–18]. The molecular players that target ROPs to the RHID and initiate outgrowth, however, have not been identified. We dissected the timing of the growth machinery assembly in polarizing hair cells and found that positioning of molecular players and outgrowth are temporally separate processes that are each controlled by specific ROP guanine nucleotide exchange factor (GEFs). A functional analysis of trichoblast-specific GEFs revealed GEF3 to be required for normal ROP polarization and thus efficient root hair emergence, while GEF4 predominantly regulates subsequent tip growth. Ectopic expression of GEF3 induced the formation of spatially confined, ROP-recruiting domains in other cell types, demonstrating the role of GEF3 to serve as a membrane landmark during cell polarization. Our findings suggest that morphogenetic programs in plants employ distinct regulatory modules for the alignment and activation of the cellular growth machinery.


2005 ◽  
Vol 168 (5) ◽  
pp. 801-812 ◽  
Author(s):  
Patrick Vincent ◽  
Michael Chua ◽  
Fabien Nogue ◽  
Ashley Fairbrother ◽  
Hal Mekeel ◽  
...  

Phosphatidylinositol (PtdIns) transfer proteins (PITPs) regulate signaling interfaces between lipid metabolism and membrane trafficking. Herein, we demonstrate that AtSfh1p, a member of a large and uncharacterized Arabidopsis thaliana Sec14p-nodulin domain family, is a PITP that regulates a specific stage in root hair development. AtSfh1p localizes along the root hair plasma membrane and is enriched in discrete plasma membrane domains and in the root hair tip cytoplasm. This localization pattern recapitulates that visualized for PtdIns(4,5)P2 in developing root hairs. Gene ablation experiments show AtSfh1p nullizygosity compromises polarized root hair expansion in a manner that coincides with loss of tip-directed PtdIns(4,5)P2, dispersal of secretory vesicles from the tip cytoplasm, loss of the tip f-actin network, and manifest disorganization of the root hair microtubule cytoskeleton. Derangement of tip-directed Ca2+ gradients is also apparent and results from isotropic influx of Ca2+ from the extracellular milieu. We propose AtSfh1p regulates intracellular and plasma membrane phosphoinositide polarity landmarks that focus membrane trafficking, Ca2+ signaling, and cytoskeleton functions to the growing root hair apex. We further suggest that Sec14p-nodulin domain proteins represent a family of regulators of polarized membrane growth in plants.


Sign in / Sign up

Export Citation Format

Share Document