scholarly journals AHK5 mediates ETR1-initiated multistep phosphorelay in Arabidopsis

2021 ◽  
Author(s):  
Agnieszka Szmitkowska ◽  
Abigail Rubiato Cuyacot ◽  
Blanka Pekarova ◽  
Marketa Zdarska ◽  
Josef Houser ◽  
...  

Plants, like other sessile organisms, need to sense many different signals, and in response to them, modify their developmental programs to be able to survive in a highly changing environment. The multistep phosphorelay (MSP) in plants is a good candidate for a response mechanism that integrates multiple signal types both environmental and intrinsic in origin. Recently, ethylene was shown to control MSP activity via the histidine kinase (HK) activity of ETHYLENE RESPONSE 1 (ETR1)1,2, but the underlying molecular mechanism still remains unclear. Here we show that although ETR1 is an active HK, its receiver domain (ETR1RD) is structurally and functionally unable to accept the phosphate from the phosphorylated His in the ETR1 HK domain (ETR1HK) to initiate the phosphorelay to ARABIDOPSIS HISTIDINE-CONTAINING PHOSPHOTRANSMITTERs (AHPs), the next link downstream members in MSP signaling. Instead, ETR1 interacts with another HK ARABIDOPSIS HISTIDINE KINASE 5 (AHK5) and transfers the phosphate from ETR1HK through the receiver domain of AHK5 (AHK5RD), and subsequently to AHP1, AHP2 and AHP3, independently of the HK activity of AHK5. We show that AHK5 is necessary for ethylene-initiated, but not cytokinin-initiated, MSP signaling in planta and that it thus mediates hormonal control of root growth.

2014 ◽  
Vol 100 ◽  
pp. 6-15
Author(s):  
Petra Borkovcová ◽  
Blanka Pekárová ◽  
Martina Válková ◽  
Radka Dopitová ◽  
Břetislav Brzobohatý ◽  
...  

2004 ◽  
Vol 16 (6) ◽  
pp. 1365-1377 ◽  
Author(s):  
Chika Nishimura ◽  
Yoshi Ohashi ◽  
Shusei Sato ◽  
Tomohiko Kato ◽  
Satoshi Tabata ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
He Zhao ◽  
Kai-Xuan Duan ◽  
Biao Ma ◽  
Cui-Cui Yin ◽  
Yang Hu ◽  
...  

2002 ◽  
Vol 13 (2) ◽  
pp. 412-424 ◽  
Author(s):  
Sheng Li ◽  
Susan Dean ◽  
Zhijian Li ◽  
Joe Horecka ◽  
Robert J. Deschenes ◽  
...  

The yeast “two-component” osmotic stress phosphorelay consists of the histidine kinase, Sln1p, the phosphorelay intermediate, Ypd1p and two response regulators, Ssk1p and Skn7p, whose activities are regulated by phosphorylation of a conserved aspartyl residue in the receiver domain. Dephospho-Ssk1p leads to activation of the hyper-osmotic response (HOG) pathway, whereas phospho-Skn7p presumably leads to activation of hypo-osmotic response genes. The multifunctional Skn7 protein is important in oxidative as well as osmotic stress; however, the Skn7p receiver domain aspartate that is the phosphoacceptor in the SLN1 pathway is dispensable for oxidative stress. Like many well-characterized bacterial response regulators, Skn7p is a transcription factor. In this report we investigate the role of Skn7p in osmotic response gene activation. Our studies reveal that the Skn7p HSF-like DNA binding domain interacts with acis-acting element identified upstream ofOCH1 that is distinct from the previously defined HSE-like Skn7p binding site. Our data support a model in which Skn7p receiver domain phosphorylation affects transcriptional activation rather than DNA binding to this class of DNA binding site.


PLoS Genetics ◽  
2016 ◽  
Vol 12 (11) ◽  
pp. e1006437 ◽  
Author(s):  
Fan Zhang ◽  
Likai wang ◽  
Jae Yun Lim ◽  
Taewook Kim ◽  
Youngjae Pyo ◽  
...  

2019 ◽  
Author(s):  
Benjamin J. Stein ◽  
Aretha Fiebig ◽  
Sean Crosson

AbstractTwo-component signaling systems (TCSs) function to detect environmental cues and transduce this information into a change in transcription. In its simplest form, TCS-dependent regulation of transcription entails phosphoryl-transfer from a sensory histidine kinase to its cognate DNA-binding receiver protein. However, in certain cases, auxiliary proteins may modulate TCSs in response to secondary environmental cues. Caulobacter crescentus FixT is one such auxiliary regulator. FixT is composed of a single receiver domain and functions as a feedback inhibitor of the FixL-FixJ (FixLJ) TCS, which regulates the transcription of genes involved in adaptation to microaerobiosis. We sought to define the impact of fixT on Caulobacter cell physiology and to understand the molecular mechanism by which FixT represses FixLJ signaling. fixT deletion results in excess production of porphyrins and premature entry into stationary phase, demonstrating the importance of feedback inhibition of the FixLJ signaling system. Although FixT is a receiver domain, it does not affect dephosphorylation of the oxygen-sensor kinase FixL or phosphoryltransfer from FixL to its cognate receiver FixJ. Rather, FixT represses FixLJ signaling by inhibiting the FixL autophosphorylation reaction. We have further identified a 4-cysteine motif in Caulobacter FixT that binds an Fe-S cluster and protects the protein from degradation by the Lon protease. Our data support a model in which oxidation of this Fe-S cluster promotes degradation of FixT in vivo. This proteolytic mechanism facilitates clearance the of the FixT feedback inhibitor from the cell under normoxia and resets the FixLJ system for a future microaerobic signaling event.ImportanceTwo-component signal transduction systems (TCSs) are broadly conserved in the bacterial kingdom and generally contain two molecular components: a sensor histidine kinase and a receiver protein. Sensor histidine kinases alter their phosphorylation state in direct response to a physical or chemical cue, whereas receiver proteins “receive” the phosphoryl group from the kinase to regulate a change in cell physiology. We have discovered that a single-domain receiver protein, FixT, binds an Fe-S cluster and controls Caulobacter heme homeostasis though its function as a negative feedback regulator of the oxygen-sensor kinase, FixL. We provide evidence that the Fe-S cluster protects FixT from Lon-dependent proteolysis in the cell and endows FixT with the ability to function as a second, autonomous oxygen/redox sensor in the FixL-FixJ signaling pathway. This study introduces a novel mechanism of regulated TCS feedback control by an Fe-S-binding receiver domain.


2017 ◽  
Vol 292 (42) ◽  
pp. 17525-17540 ◽  
Author(s):  
Olga Otrusinová ◽  
Gabriel Demo ◽  
Petr Padrta ◽  
Zuzana Jaseňáková ◽  
Blanka Pekárová ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document