wild type plant
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 1)

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaozhi Ma ◽  
Chunmei Li ◽  
Rui Huang ◽  
Kuan Zhang ◽  
Qian Wang ◽  
...  

Abstract Background Mechanical strength is a crucial agronomic trait in rice (Oryza sativa), and brittle mutants are thought suitable materials to investigate the mechanism of cell wall formation. So far, almost all brittle mutants are recessive, and most of them are defected in multiple morphologies and/or grain yield, limiting their application in hybrid breeding and in rice straw recycling. Results We identified a semi-dominant brittle mutant Brittle culm19 (Bc19) isolated from the japonica variety Nipponbare through chemical mutagenesis. The mutant showed the same apparent morphologies and grain yield to the wild type plant except for its weak mechanical strength. Its development of secondary cell wall in sclerenchyma cells was affected, along with reduced contents of cellulose, hemicellulose, lignin and sugars in culms and leaves. Positional cloning suggested that the Bc19 gene was allelic to OsCESA4, encoding one of the cellulose synthase A (CESA) catalytic subunits. In this mutant, a C-to-T substitution occurred in the coding sequence of BC19, causing the P507S missense mutation in its encoded product, which was located in the second cytoplasmic region of the OsCESA4 protein. Furthermore, introducing mutant gene Bc19 into the wild-type plant resulted in brittle plants, confirming that the P507S point mutation in OsCESA4 protein was responsible for the semi-dominant brittle phenotype of Bc19 mutant. Reverse correlation was revealed between cellulose contents and expression levels of mutant gene Bc19 among the homozygous mutant, the hybrid F1 plant, and the Bc19 overexpression transgenic plants, implying that gene Bc19 might affect cellulose synthesis in a dosage-dependent manner. Conclusions Bc19, a semi-dominant brittle mutant allele of gene OsCESA4, was identified using map-based cloning approach. The mutated protein of Bc19 possessing the P507S missense mutation behaved in a dosage-dependent semi-dominant manner. Unique brittle effect on phenotype and semi-dominant genetic quality of gene Bc19 indicated its potential application in grain-straw dual-purpose hybrid rice breeding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ru-Feng Song ◽  
Ting-Ting Li ◽  
Wen-Cheng Liu

High salinity causes ionic, osmotic, and oxidative stresses to plants, and the antioxidant enzyme Catalase2 (CAT2) plays a vital role in this process, while how CAT2 expression is regulated during plant response to high salinity remains elusive. Here, we report that phytohormone jasmonic acid (JA) impairs plant salt stress tolerance by repressing CAT2 expression in an MYC2-dependent manner. Exogenous JA application decreased plant salt stress tolerance while the jar1 mutant with reduced bioactive JA-Ile accumulation showed enhanced salt stress tolerance. JA enhanced salt-induced hydrogen peroxide (H2O2) accumulation, while treatment with H2O2-scavenger glutathione compromised such effects of JA on plant H2O2 accumulation and salt stress tolerance. In addition, JA repressed CAT2 expression in salt-stressed wild-type plant but not in myc2, a mutant of the master transcriptional factor MYC2 in JA signaling, therefore, the myc2 mutant exhibited increased salt stress tolerance. Further study showed that mutation of CAT2 largely reverted lower reactive oxygen species (ROS) accumulation, higher CAT activity, and enhanced salt stress tolerance of the myc2 mutant in myc2 cat2-1 double mutant, revealing that CAT2 functions downstream JA-MYC2 module in plant response to high salinity. Together, our study reveals that JA impairs Arabidopsis seedling salt stress tolerance through MYC2-mediated repression of CAT2 expression.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1568
Author(s):  
Weina Si ◽  
Qizhi Liang ◽  
Li Chen ◽  
Feiyang Song ◽  
You Chen ◽  
...  

Drought is a key factor affecting plant growth and development. Heat shock transcription factors (Hsfs) have been reported to respond to diverse abiotic stresses, including drought stress. In the present study, functional characterization of maize heat shock transcription factor 05 (ZmHsf05) gene was conducted. Homologous analysis showed that ZmHsf05 belongs to Class A2 Hsfs. The mRNA expression level of ZmHsf05 can be affected by drought, high temperature, salt, and abscisic acid (ABA) treatment. Ectopic overexpression of ZmHsf05 in rice (Oryza sativa) could significantly enhance the drought tolerance. Faced with drought stress, transgenic rice exhibited better phenotypic performance, higher survival rate, higher proline content, and lower leaf water loss rate, compared with wild-type plant Zhonghua11. Additionally, we assessed the agronomic traits of seven transgenic rice lines overexpressing ZmHsf05 and found that ZmHsf05 altered agronomical traits in the field trials. Moreover, rice overexpressing ZmHsf05 was more sensitive to ABA and had either a lower germination rate or shorter shoot length under ABA treatment. The transcription level of key genes in the ABA synthesis and drought-related pathway were significantly improved in transgenic rice after drought stress. Collectively, our results showed that ZmHsf05 could improve drought tolerance in rice, likely in an ABA-dependent manner.


2021 ◽  
Author(s):  
Xiaozhi Ma ◽  
Chunmei Li ◽  
Rui Huang ◽  
Kuan Zhang ◽  
Qian Wang ◽  
...  

Abstract Background: Mechanical strength is a crucial agronomic trait in rice (Oryza sativa), and brittle mutants are thought suitable materials to investigate the mechanism of cell wall formation. So far, almost all brittle mutants are recessive, and most of them are defected in multiple morphologies and/or grain yield, limiting their application in hybrid breeding and in rice straw recycling.Results: We identified a semi-dominant brittle mutant Brittle culm19 (Bc19) isolated from the japonica variety Nipponbare through chemical mutagenesis. The mutant showed the same apparent morphologies and grain yield to the wild type plant except for its weak mechanical strength. Its development of secondary cell wall in sclerenchyma cells was affected, along with reduced contents of cellulose, hemicellulose, lignin and sugars in culms and leaves. Positional cloning suggested that the Bc19 gene was allelic to OsCesA4, encoding one of the cellulose synthase A (CesA) catalytic subunits. In this mutant, a C-to-T substitution occurred in the coding sequence of BC19, causing the P507S missense mutation in its encoded product, which was located in the second cytoplasmic region of the OsCesA4 protein. Furthermore, introducing mutant gene Bc19 into the wild-type plant resulted in brittle plants, confirming that the P507S point mutation in OsCesA4 protein was responsible for the semi-dominant brittle phenotype of Bc19 mutant. Reverse correlation was revealed between cellulose contents and expression levels of mutant gene Bc19 among the homozygous mutant, the hybrid F1 plant, and the Bc19 overexpression transgenic plants, implying that gene Bc19 might affect cellulose synthesis in a dosage-dependent manner.Conclusions: Bc19, a semi-dominant brittle mutant allele of gene OsCesA4, was identified using map-based cloning approach. The mutated protein of Bc19 possessing the P507S missense mutation behaved in a dosage-dependent semi-dominant manner. Unique brittle effect on phenotype and semi-dominant genetic quality of gene Bc19 indicated its potential application in grain-straw dual-purpose hybrid rice breeding.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Huan Du ◽  
Zhicheng Jiao ◽  
Junjie Liu ◽  
Wei Huang ◽  
Liangfa Ge

Abstract Background Fast neutron bombardment (FNB) is a very effective approach for mutagenesis and has been widely used in generating mutant libraries in many plant species. The main type of mutations of FNB mutants are deletions of DNA fragments ranging from few base pairs to several hundred kilobases, thus usually leading to the null mutation of genes. Despite its efficiency in mutagenesis, identification of the mutation sites is still challenging in many species. The traditional strategy of positional cloning is very effective in identifying the mutation but time-consuming. With the availability of genome sequences, the array-based comparative genomic hybridization (CGH) method has been developed to detect the mutation sites by comparing the signal intensities of probes between wild-type and mutant plants. Though CGH method is effective in detecting copy number variations (CNVs), the resolution and coverage of CGH probes are not adequate to identify mutations other than CNVs. Results We report a new strategy and pipeline to sensitively identify the mutation sites of FNB mutants by combining deep-coverage whole-genome sequencing (WGS), polymorphism calling, and customized filtering in Medicago truncatula. Initially, we performed a bulked sequencing for a FNB white nodule (wn) mutant and its wild-type like plants derived from a backcross population. Following polymorphism calling and filtering, validation by manual check and Sanger sequencing, we identified that SymCRK is the causative gene of white nodule mutant. We also sequenced an individual FNB mutant yellow leaves 1 (yl1) and wild-type plant. We identified that ETHYLENE-DEPENDENT GRAVITROPISM-DEFICIENT AND YELLOW-GREEN 1 (EGY1) is the candidate gene for M. truncatula yl1 mutant. Conclusion Our results demonstrated that the method reported here is rather robust in identifying the mutation sites for FNB mutants.


2021 ◽  
Vol 22 (8) ◽  
pp. 4014
Author(s):  
Lin-Feng Wang ◽  
Ting-Ting Li ◽  
Yu Zhang ◽  
Jia-Xing Guo ◽  
Kai-Kai Lu ◽  
...  

Osmotic stress severely inhibits plant growth and development, causing huge loss of crop quality and quantity worldwide. Melatonin is an important signaling molecule that generally confers plant increased tolerance to various environmental stresses, however, whether and how melatonin participates in plant osmotic stress response remain elusive. Here, we report that melatonin enhances plant osmotic stress tolerance through increasing ROS-scavenging ability, and melatonin receptor CAND2 plays a key role in melatonin-mediated plant response to osmotic stress. Upon osmotic stress treatment, the expression of melatonin biosynthetic genes including SNAT1, COMT1, and ASMT1 and the accumulation of melatonin are increased in the wild-type plants. The snat1 mutant is defective in osmotic stress-induced melatonin accumulation and thus sensitive to osmotic stress, while exogenous melatonin enhances the tolerance of the wild-type plant and rescues the sensitivity of the snat1 mutant to osmotic stress by upregulating the expression and activity of catalase and superoxide dismutase to repress H2O2 accumulation. Further study showed that the melatonin receptor mutant cand2 exhibits reduced osmotic stress tolerance with increased ROS accumulation, but exogenous melatonin cannot revert its osmotic stress phenotype. Together, our study reveals that CADN2 functions necessarily in melatonin-conferred osmotic stress tolerance by activating ROS-scavenging ability in Arabidopsis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jeehee Roh ◽  
Jinyoung Moon ◽  
Ye Eun Lee ◽  
Chan Ho Park ◽  
Seong-Ki Kim

Brachypodium distachyon is a monocotyledonous model plant that contains castasterone (CS) but no brassinolide (BL) as the end product of brassinosteroids (BR) biosynthesis, indicating dysfunction of BL synthase, which catalyzes the conversion of CS to BL. To increase BR activity, Arabidopsis cytochrome P450 85A2 (AtCYP85A2) encoding BR 6-oxidase/BL synthase was introduced into B. distachyon with the seed-specific promoters pBSU1, pAt5g10120, and pAt5g54000. RT-PCR analysis and GUS activity revealed that AtCYP85A2 was only expressed in the seeds of the transgenic plants pBSU1-AtCYP85A2::Bd21-3, pAt5g10120-AtCYP85A2::Bd21-3, and pAt5g54000-AtCYP85A2::Bd21-3. The crude enzyme prepared from the seeds of these three transgenic plants catalyzed the conversion of 6-deoxoCS to CS. The transgenic plants showed greater specific enzyme activity than the wild-type plant for the conversion of 6-deoxoCS to CS, indicating enhanced BR 6-oxidase activity in the transgenic plants. The enzyme solution also catalyzed the conversion of CS into BL. Additionally, BL was identified from the seeds of transgenic plants, verifying that seed-specific AtCYP85A2 encodes a functional BL synthase to increase BR activity in the seeds of transgenic Brachypodium. In comparison with wild-type Brachypodium, the transgenic plants showed better growth and development during the vegetative growing stage. The flowers of the transgenic plants were remarkably larger, resulting in increments in the number, size, and height of seeds. The total starch, protein, and lipid contents in transgenic plants were higher than those in wild-type plants, indicating that seed-specific expression of AtCYP85A2 improves both grain yield and quality in B. distachyon.


2021 ◽  
Author(s):  
Ky Young Park ◽  
So Yeon Seo

Chloroplasts play a pivotal role in biotic and abiotic stress responses, accompanying changes in the cell reduction/oxidation (redox) state. Chloroplasts are an endosymbiotic organelle that sends retrograde signals to the nucleus to integrate with environmental changes. This study showed that salt stress causes the rapid accumulation of the nonexpressor of pathogenesis-related genes 1 (NPR1) protein, a redox-sensitive transcription coactivator that elicits many tolerance responses in chloroplasts and the nucleus. The transiently accumulated chloroplast NPR1 protein was translocated to the nucleus in a redox-dependent manner under salinity stress. In addition, immunoblotting and fluorescence image analysis showed that chloroplast-targeted NPR1-GFP fused with cTP (chloroplast transit peptide from RbcS) was localized in the nucleus during the responses to salt stress. Chloroplast functionality was essential for retrograde translocation, in which the stomules and cytoplasmic vesicles participated. Treatments with H2O2 and an ethylene precursor enhanced this retrograde translocation. Compared to each wild-type plant, retrograde signaling-related gene expression was severely impaired in the npr1-1 mutant in Arabidopsis, but enhanced transiently in the NPR1-Ox transgenic tobacco line. Therefore, NPR1 might be a retrograde signaling hub that improves a plant's adaptability to changing environments.


2021 ◽  
Author(s):  
Yulin Jiang ◽  
Xing Chen ◽  
Songyue Chai ◽  
Huajin Sheng ◽  
Lina Sha ◽  
...  

Abstract Aims (1) Explore the metal substrate specificity of homologous TpIRT1A and TpIRT1B transporters from dwarf Polish wheat by expressing them in protoplast, yeast, and transgenic Arabidopsis; (2) screen polymorphic residues of IRT1 homologs from tetraploid and diploid ancestral wheat species that change the substrate specificity.Methods Two IRT1 homoeologs were isolated from A (TpIRT1A) and B (TpIRT1B) genomes of a tetraploid crop, polish wheat (Triticum polonicum). Both of them were analysed by expressing them in yeast and Arabidopsis protoplast, respectively. Then we constructed over-expressing transgenic plants of TpIRT1B for metals property analysis in Arabidopsis. We also isolated 22 IRT1 homoeologs from tetraploid and diploid ancestral wheat species and expressed them in yeast for function analysis. Results Our data highlighted the importance of TpIRT1 in the uptake and translocation of Fe, Mn, Co, and Cd with direct implications for wheat yield potential. Both TpIRT1A and TpIRT1B were located at the plasma membrane and internal vesicles in Arabidopsis protoplasts, and responsible for Cd and Co sensitivity in yeast. The over-expression of TpIRT1B in A. thaliana increased Fe, Mn, Co, and Cd concentration in its tissues and improved plant growth under Fe, Mn, and Co deficiencies, while causing more sensitivity to Cd than wild-type plant. Functional analysis of IRT1 homoeologs from tetraploid and diploid ancestral wheat species in yeast disclosed four distinct amino acid residues in TdiIRT1B (T. dicoccum) and TtuIRT1B (T. turgidum). Altogether, these results increase the knowledge of IRT1 function in a global crop, wheat.


2020 ◽  
Author(s):  
Anna Koprivova ◽  
Vanessa Volz ◽  
Stanislav Kopriva

Plants exude secondary metabolites from the roots to shape the composition and function of their microbiome. Many of these compounds are known for their anti-microbial activity and are part of the plant immunity, such as the indole-derived phytoalexin camalexin. Here we studied the dynamics of camalexin synthesis and exudation upon induction of Arabidopsis thaliana with a plant growth promotion bacteria Pseudomonas sp. CH267 or a bacterial pathogen Burkholderia glumae PG1. We show that while the camalexin accumulation and exudation is more rapidly but transiently induced upon interaction with the growth promoting strain, the pathogen induces a higher and more stable camalexin levels. The concentration of camalexin in shoots, roots and exudates is well correlated, triggering a question on the origin of the exuded camalexin. By combination of experiments with cut shoots and roots and grafting of wild type plant with mutants in camalexin synthesis we showed that while camalexin can be produced and released by both organs, in intact plant the exuded camalexin originates in the shoots. We show that camalexin synthesis in response to B. glumae PG1 is dependent on cooperation of four CYP71 genes and a loss of function of any of them reduces camalexin synthesis. In conclusion, camalexin synthesis seems to be controlled on a whole plant level and coordinated between shoots and roots.


Sign in / Sign up

Export Citation Format

Share Document