scholarly journals A phenotypic screen using splitCas9 identifies essential genes required for actin regulation during host cell egress and invasion by Toxoplasma gondii

2021 ◽  
Author(s):  
Wei Li ◽  
Janessa Grech ◽  
Johannes Felix Stortz ◽  
Matthew Gow ◽  
Javier Periz ◽  
...  

Apicomplexan parasites, such as Toxoplasma gondii, possess unique organelles, cytoskeletal structures, signalling cascades, replicate by internal budding within a specialised compartment and actively invade and exit the host cell, to name a few aspects of the unique biology that characterise this phylum. Due to their huge phylogenetic distance from well established model organisms, such as opisthokonts, comparative genomics has a limited capacity to infer gene functions and conserved proteins can fulfil different roles in apicomplexans. Indeed, approximately 30% of all genes are annotated as hypothetical and many had a crucial role during the asexual life cycle in genome-wide screens. While the current CRISPR/Cas9-based screens allow the identification of fitness conferring genes, only little information about the respective functions can be obtained. To overcome this limitation, and to group genes of interest into functional groups, we established a conditional Cas9-system in T. gondii that allows phenotypic screens. Using an indicator strain for F-actin dynamics and apicoplast segregation, we identified critical genes required for defined steps during the asexual life cycle. The detailed characterisation of two of these candidates revealed them to be critical for host cell egress and invasion and to act at different time points in the disassembly of the intravacuolar F-actin network. While the signalling linking factor (SLF) is an integral part of a signalling complex required for early induction of egress, a novel conoid protein (conoid gliding protein, CGP) acts late during egress and is required for the activation of gliding motility.

mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Bang Shen ◽  
Jeffrey S. Buguliskis ◽  
Tobie D. Lee ◽  
L. David Sibley

ABSTRACT Host cell invasion by Toxoplasma gondii and other apicomplexan parasites requires transmembrane adhesins that mediate binding to receptors on the substrate and host cell to facilitate motility and invasion. Rhomboid proteases (ROMs) are thought to cleave adhesins within their transmembrane segments, thus allowing the parasite to disengage from receptors and completely enter the host cell. To examine the specific roles of individual ROMs during invasion, we generated single, double, and triple knockouts for the three ROMs expressed in T. gondii tachyzoites. Analysis of these mutants demonstrated that ROM4 is the primary protease involved in adhesin processing and host cell invasion, whereas ROM1 or ROM5 plays negligible roles in these processes. Deletion of ROM4 blocked the shedding of adhesins such as MIC2 (microneme protein 2), causing them to accumulate on the surface of extracellular parasites. Increased surface adhesins led to nonproductive attachment, altered gliding motility, impaired moving junction formation, and reduced invasion efficiency. Despite the importance of ROM4 for efficient invasion, mutants lacking all three ROMs were viable and MIC2 was still efficiently removed from the surface of invaded mutant parasites, implying the existence of ROM-independent mechanisms for adhesin removal during invasion. Collectively, these results suggest that although ROM processing of adhesins is not absolutely essential, it is important for efficient host cell invasion by T. gondii. IMPORTANCE Apicomplexan parasites such as Toxoplasma gondii express surface proteins that bind host cell receptors to aid invasion. Many of these adhesins are subject to cleavage by rhomboid proteases (ROMs) within their transmembrane segments during invasion. Previous studies have demonstrated the importance of adhesin cleavage for parasite invasion and proposed that the ROMs responsible for processing would be essential for parasite survival. In T. gondii, ROM5 was thought to be the critical ROM for adhesin shedding due to its robust protease activity in vitro and posterior localization on the parasite surface. Here, we knocked out all three ROMs in T. gondii tachyzoites and found that ROM4, but not ROM5, was key for adhesin cleavage. However, none of the ROMs individually or in combination was essential for cell entry, further emphasizing that essential pathways such as invasion typically rely on redundant pathways to ensure survival.


2018 ◽  
Author(s):  
Johannes Felix Stortz ◽  
Mirko Singer ◽  
Jonathan M Wilkes ◽  
Markus Meissner ◽  
Sujaan Das

AbstractPathogenic obligate-intracellular apicomplexan parasites possess an essential chloroplast-like organelle called the apicoplast that undergoes division and segregation during replication. Parasite actin is essential during intracellular development, implicated in vesicular transport, parasite replication and apicoplast inheritance. However, the inability to visualise live actin dynamics in apicomplexan parasites limited functional characterisation of both filamentous-actin (F-actin) and actin regulatory factors. Apicomplexans possess at least two distinct formins, Formin-1 and Formin-2, predicted to serve as actin-nucleating factors, and previously implicated in regulating gliding motility and host cell invasion. Here, we expressed chromobodies and validated them as F-actin-binding sensors in Plasmodium falciparum and characterised the in vivo dynamics of the F-actin network. The F-actin network could be modulated chemically and disrupted by conditionally deleting the actin-1 gene. In a comparative approach, we demonstrate that Formin-2 is closely associated with apicoplasts and with the F-actin network in P. falciparum and Toxoplasma gondii. Consequently, disruption of Formin-2 resulted not only in an apicoplast segregation defect, but also in complete abrogation of F-actin dynamics in intracellular parasites. Together, our results strongly indicate that Formin-2-mediated filament formation is the common primary mechanism for F-actin nucleation during apicomplexan intracellular growth effecting apicoplast segregation.


2018 ◽  
Author(s):  
Bradley I. Coleman ◽  
Sudeshna Saha ◽  
Seiko Sato ◽  
Klemens Engelberg ◽  
David J. P. Ferguson ◽  
...  

AbstractInvasion of host cells by apicomplexan parasites such as Toxoplasma gondii is critical for their infectivity and pathogenesis. In Toxoplasma, secretion of essential egress, motility and invasion-related proteins from microneme organelles is regulated by oscillations of intracellular Ca2+. Later stages of invasion are considered Ca2+-independent, including the secretion of proteins required for host cell entry and remodeling from the parasite’s rhoptries. We identified a family of three Toxoplasma proteins with homology to the ferlin family of double C2 domain-containing Ca2+ sensors. In humans and model organisms such Ca2+ sensors orchestrate Ca2+-dependent exocytic membrane fusion with the plasma membrane. One ferlin that is conserved across the Apicomplexa, TgFER2, localizes to the parasite’s cortical membrane skeleton, apical end, and rhoptries. Unexpectedly, conditionally TgFER2-depleted parasites secreted their micronemes normally and were completely motile. However, these parasites were unable to invade host cells and were therefore not viable. Specifically, knockdown of TgFER2 prevented rhoptry secretion and these parasites failed to form the moving junction on the parasite-host interface necessary for host cell invasion. Collectively, these data demonstrate that the putative Ca2+ sensor TgFER2 is required for the secretion of rhoptries. These findings provide the first regulatory and mechanistic insights into this critical yet poorly understood aspect of apicomplexan host cell invasion.Graphical abstract


2014 ◽  
Vol 25 (17) ◽  
pp. 2579-2591 ◽  
Author(s):  
Qing Tang ◽  
Nicole Andenmatten ◽  
Miryam A. Hortua Triana ◽  
Bin Deng ◽  
Markus Meissner ◽  
...  

Class XIVa myosins comprise a unique group of myosin motor proteins found in apicomplexan parasites, including those that cause malaria and toxoplasmosis. The founding member of the class XIVa family, Toxoplasma gondii myosin A (TgMyoA), is a monomeric unconventional myosin that functions at the parasite periphery to control gliding motility, host cell invasion, and host cell egress. How the motor activity of TgMyoA is regulated during these critical steps in the parasite's lytic cycle is unknown. We show here that a small-molecule enhancer of T. gondii motility and invasion (compound 130038) causes an increase in parasite intracellular calcium levels, leading to a calcium-dependent increase in TgMyoA phosphorylation. Mutation of the major sites of phosphorylation altered parasite motile behavior upon compound 130038 treatment, and parasites expressing a nonphosphorylatable mutant myosin egressed from host cells more slowly in response to treatment with calcium ionophore. These data demonstrate that TgMyoA undergoes calcium-dependent phosphorylation, which modulates myosin-driven processes in this important human pathogen.


2021 ◽  
Vol 9 (8) ◽  
pp. 1621
Author(s):  
Adeline Ribeiro E Silva ◽  
Alix Sausset ◽  
Françoise I. Bussière ◽  
Fabrice Laurent ◽  
Sonia Lacroix-Lamandé ◽  
...  

Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7–9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.


2001 ◽  
Vol 155 (4) ◽  
pp. 613-624 ◽  
Author(s):  
Frédéric Delbac ◽  
Astrid Sänger ◽  
Eva M. Neuhaus ◽  
Rolf Stratmann ◽  
James W. Ajioka ◽  
...  

In apicomplexan parasites, actin-disrupting drugs and the inhibitor of myosin heavy chain ATPase, 2,3-butanedione monoxime, have been shown to interfere with host cell invasion by inhibiting parasite gliding motility. We report here that the actomyosin system of Toxoplasma gondii also contributes to the process of cell division by ensuring accurate budding of daughter cells. T. gondii myosins B and C are encoded by alternatively spliced mRNAs and differ only in their COOH-terminal tails. MyoB and MyoC showed distinct subcellular localizations and dissimilar solubilities, which were conferred by their tails. MyoC is the first marker selectively concentrated at the anterior and posterior polar rings of the inner membrane complex, structures that play a key role in cell shape integrity during daughter cell biogenesis. When transiently expressed, MyoB, MyoC, as well as the common motor domain lacking the tail did not distribute evenly between daughter cells, suggesting some impairment in proper segregation. Stable overexpression of MyoB caused a significant defect in parasite cell division, leading to the formation of extensive residual bodies, a substantial delay in replication, and loss of acute virulence in mice. Altogether, these observations suggest that MyoB/C products play a role in proper daughter cell budding and separation.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Sudeshna Saha ◽  
Bradley I. Coleman ◽  
Rashmi Dubey ◽  
Ira J. Blader ◽  
Marc-Jan Gubbels

ABSTRACT Ca2+-dependent exocytosis is essential for the life cycle of apicomplexan parasites. Toxoplasma gondii harbors a phosphoglucomutase (PGM) ortholog, PRP1, previously associated with Ca2+-dependent microneme secretion. Here it is shown that genetic deletion of either PRP1, its PGM2 ortholog, or both genes is dispensable for the parasite’s lytic cycle, including host cell egress and invasion. Depletion of the proteins abrogated high Ca2+-mediated microneme secretion induced by the ionophore A23187; however, the constitutive and phosphatidic acid-mediated release remained unaffected. Secretion mediated by the former pathway is not essential for tachyzoite survival or acute in vivo infection in the mice. Paralogs of the widely prevalent phosphoglucomutase (PGM) protein called parafusin function in calcium (Ca2+)-mediated exocytosis across eukaryotes. In Toxoplasma gondii, the parafusin-related protein 1 (PRP1) has been associated with Ca2+-dependent microneme organelle secretion required for essential processes like host cell invasion and egress. Using reverse genetics, we observed PRP1 to be dispensable for completion of the lytic cycle, including host cell invasion and egress by the parasite. However, the absence of the gene affected increased microneme release triggered by A23187, a Ca2+ ionophore used to raise the cytoplasmic Ca2+ concentration mimicking the physiological role of Ca2+ during invasion and egress. The basal levels of constitutive microneme release in extracellular parasites and phosphatidic acid-triggered microneme secretion were unaffected in the mutant. The phenotype of the deletion mutant of the second PGM-encoding gene in Toxoplasma, PGM2, was similar to the phenotype of the PRP1 deletion mutant. Furthermore, the ability of the tachyzoites to induce acute infection in the mice remained normal in the absence of both PGM paralogs. Our data thus reveal that the microneme secretion upon high Ca2+ flux is facilitated by the Toxoplasma PGM paralogs, PRP1 and PGM2. However, this protein-mediated release is neither essential for lytic cycle completion nor for acute virulence of the parasite. IMPORTANCE Ca2+-dependent exocytosis is essential for the life cycle of apicomplexan parasites. Toxoplasma gondii harbors a phosphoglucomutase (PGM) ortholog, PRP1, previously associated with Ca2+-dependent microneme secretion. Here it is shown that genetic deletion of either PRP1, its PGM2 ortholog, or both genes is dispensable for the parasite’s lytic cycle, including host cell egress and invasion. Depletion of the proteins abrogated high Ca2+-mediated microneme secretion induced by the ionophore A23187; however, the constitutive and phosphatidic acid-mediated release remained unaffected. Secretion mediated by the former pathway is not essential for tachyzoite survival or acute in vivo infection in the mice.


2004 ◽  
Vol 165 (3) ◽  
pp. 383-393 ◽  
Author(s):  
Elizabeth Gaskins ◽  
Stacey Gilk ◽  
Nicolette DeVore ◽  
Tara Mann ◽  
Gary Ward ◽  
...  

Apicomplexan parasites exhibit a unique form of substrate-dependent motility, gliding motility, which is essential during their invasion of host cells and during their spread between host cells. This process is dependent on actin filaments and myosin that are both located between the plasma membrane and two underlying membranes of the inner membrane complex. We have identified a protein complex in the apicomplexan parasite Toxoplasma gondii that contains the class XIV myosin required for gliding motility, TgMyoA, its associated light chain, TgMLC1, and two novel proteins, TgGAP45 and TgGAP50. We have localized this complex to the inner membrane complex of Toxoplasma, where it is anchored in the membrane by TgGAP50, an integral membrane glycoprotein. Assembly of the protein complex is spatially controlled and occurs in two stages. These results provide the first molecular description of an integral membrane protein as a specific receptor for a myosin motor, and further our understanding of the motile apparatus underlying gliding motility in apicomplexan parasites.


mSphere ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
My-Hang Huynh ◽  
Vern B. Carruthers

ABSTRACT Toxoplasma gondii is a successful human pathogen in the same phylum as malaria-causing Plasmodium parasites. Invasion of a host cell is an essential process that begins with secretion of adhesive proteins onto the parasite surface for attachment and subsequent penetration of the host cell. Conserved invasion proteins likely play roles that were maintained through the divergence of these parasites. Here, we identify a new conserved invasion protein called glycosylphosphatidylinositol-anchored micronemal antigen (GAMA). Tachyzoites lacking TgGAMA were partially impaired in parasite attachment and invasion of host cells, yielding the first genetic evidence of a specific role in parasite entry into host cells. These findings widen our appreciation of the repertoire of conserved proteins that apicomplexan parasites employ for cell invasion. Toxoplasma gondii and its Plasmodium kin share a well-conserved invasion process, including sequential secretion of adhesive molecules for host cell attachment and invasion. However, only a few orthologs have been shown to be important for efficient invasion by both genera. Bioinformatic screening to uncover potential new players in invasion identified a previously unrecognized T. gondii ortholog of Plasmodium glycosylphosphatidylinositol-anchored micronemal antigen (TgGAMA). We show that TgGAMA localizes to the micronemes and is processed into several proteolytic products within the parasite prior to secretion onto the parasite surface during invasion. TgGAMA from parasite lysate bound to several different host cell types in vitro, suggesting a role in parasite attachment. Consistent with this function, tetracycline-regulatable TgGAMA and TgGAMA knockout strains showed significant reductions in host cell invasion at the attachment step, with no defects in any of the other stages of the parasite lytic cycle. Together, the results of this work reveal a new conserved component of the adhesive repertoire of apicomplexan parasites. IMPORTANCE Toxoplasma gondii is a successful human pathogen in the same phylum as malaria-causing Plasmodium parasites. Invasion of a host cell is an essential process that begins with secretion of adhesive proteins onto the parasite surface for attachment and subsequent penetration of the host cell. Conserved invasion proteins likely play roles that were maintained through the divergence of these parasites. Here, we identify a new conserved invasion protein called glycosylphosphatidylinositol-anchored micronemal antigen (GAMA). Tachyzoites lacking TgGAMA were partially impaired in parasite attachment and invasion of host cells, yielding the first genetic evidence of a specific role in parasite entry into host cells. These findings widen our appreciation of the repertoire of conserved proteins that apicomplexan parasites employ for cell invasion.


2010 ◽  
Vol 6 (10) ◽  
pp. e1001132 ◽  
Author(s):  
Wassim Daher ◽  
Fabienne Plattner ◽  
Marie-France Carlier ◽  
Dominique Soldati-Favre

Sign in / Sign up

Export Citation Format

Share Document