scholarly journals Patient attrition in Molecular Tumour Boards: A Review

Author(s):  
Hannah Frost ◽  
Donna M. Graham ◽  
Louise Carter ◽  
Paul O’Regan ◽  
Donal Landers ◽  
...  

AbstractMolecular Tumour Boards (MTBs) were created with the purpose of supporting clinical decision making within precision medicine. Though these meetings are in use globally reporting often focuses on the small percentages of patients that receive treatment via this process and are less likely to report on, and assess, patients who do not receive treatment. A literature review was performed to understand patient attrition within MTBs and barriers to patients receiving treatment. A total of 56 papers were reviewed spanning a 6 year period from 11 different countries. 20% of patients received treatment through the MTB process. Of those that did not receive treatment the main reasons were no mutations identified (26%), no actionable mutations (22%) and clinical deterioration (15%). However, the data was often incomplete due to inconsistent reporting of MTBs with only 54% reporting on patients having no mutations, 48% reporting on presence of actionable mutations and 57% reporting on clinical deterioration. Patient attrition in MTBs is an issue which is very rarely alluded to in reporting, more transparent reporting is needed to understand barriers to treatment and integration of new technologies is required to process increasing omic and treatment data.

Author(s):  
Courtney Celian ◽  
Veronica Swanson ◽  
Maahi Shah ◽  
Caitlin Newman ◽  
Bridget Fowler-King ◽  
...  

Abstract Background Neurorehabilitation engineering faces numerous challenges to translating new technologies, but it is unclear which of these challenges are most limiting. Our aim is to improve understanding of rehabilitation therapists’ real-time decision-making processes on the use of rehabilitation technology (RT) in clinical treatment. Methods We used a phenomenological qualitative approach, in which three OTs and two PTs employed at a major, technology-encouraging rehabilitation hospital wrote vignettes from a written prompt describing their RT use decisions during treatment sessions with nine patients (4 with stroke, 2 traumatic brain injury, 1 spinal cord injury, 1 with multiple sclerosis). We then coded the vignettes using deductive qualitative analysis from 17 constructs derived from the RT literature and the Consolidated Framework for Implementation Research (CFIR). Data were synthesized using summative content analysis. Results Of the constructs recorded, the five most prominent are from CFIR determinants of: (i) relative advantage, (ii) personal attributes of the patients, (iii) clinician knowledge and beliefs of the device/intervention, (iv) complexity of the devices including time and setup, and (v) organizational readiness to implement. Therapists characterized candidate RT as having a relative disadvantage compared to conventional treatment due to lack of relevance to functional training. RT design also often failed to consider the multi-faceted personal attributes of the patients, including diagnoses, goals, and physical and cognitive limitations. Clinicians’ comfort with RT was increased by their previous training but was decreased by the perceived complexity of RT. Finally, therapists have limited time to gather, setup, and use RT. Conclusions Despite decades of design work aimed at creating clinically useful RT, many lack compatibility with clinical translation needs in inpatient neurologic rehabilitation. New RT continue to impede the immediacy, versatility, and functionality of hands-on therapy mediated treatment with simple everyday objects.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 11035-11035
Author(s):  
Kristen Marrone ◽  
Jessica Tao ◽  
Jenna VanLiere Canzoniero ◽  
Paola Ghanem ◽  
Emily Nizialek ◽  
...  

11035 Background: The accelerated impact of next generation sequencing (NGS) in clinical decision making requires the integration of cancer genomics and precision oncology focused training into medical oncology education. The Johns Hopkins Molecular Tumor Board (JH MTB) is a multi-disciplinary effort focused on integration of NGS findings with critical evidence interpretation to generate personalized recommendations tailored to the genetic footprint of individual patients. Methods: The JH MTB and the Medical Oncology Fellowship Program have developed a 3-month precision oncology elective for fellows in their research years. Commencing fall of 2020, the goals of this elective are to enhance the understanding of NGS platforms and findings, advance the interpretation and characterization of molecular assay outputs by use of mutation annotators and knowledgebases and ultimately master the art of matching NGS findings with available therapies. Fellow integration into the MTB focuses on mentored case-based learning in mutation characterization and ranking by levels of evidence for actionability, with culmination in form of verbal presentations and written summary reports of final MTB recommendations. A mixed methods questionnaire was administered to evaluate progress since elective initiation. Results: Three learners who have participated as of February 2021 were included. Of the two who had completed the MTB elective, each have presented at least 10 cases, with at least 1 scholarly publication planned. All indicated strong agreement that MTB elective had increased their comfort with interpreting clinical NGS reports as well as the use of knowledgebases and variant annotators. Exposure to experts in the field of molecular precision oncology, identification of resources necessary to interpret clinical NGS reports, development of ability to critically assess various NGS platforms, and gained familiarity with computational analyses relevant to clinical decision making were noted as strengths of the MTB elective. Areas of improvement included ongoing initiatives that involve streamlining variant annotation and transcription of information for written reports. Conclusions: A longitudinal elective in the JHU MTB has been found to be preliminarily effective in promoting knowledge mastery and creating academic opportunities related to the clinical application of precision medicine. Future directions will include leveraging of the MTB infrastructure for research projects, learner integration into computational laboratory meetings, and expansion of the MTB curriculum to include different levels of learners from multiple medical education programs. Continued elective participation will be key to understanding how best to facilitate adaptive expertise in assigning clinical relevance to genomic findings, ultimately improving precision medicine delivery in patient care and trial development.


Science ◽  
2015 ◽  
Vol 350 (6266) ◽  
pp. 1397-1397
Author(s):  
R. Rosenquist Brandell ◽  
O. Kallioniemi ◽  
A. Wedell

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Suneel Kumar Garg ◽  
Omender Singh ◽  
Deven Juneja ◽  
Niraj Tyagi ◽  
Amandeep Singh Khurana ◽  
...  

Polymyxin B has resurged in recent years as a last resort therapy for Gram-negative multidrug-resistant (MDR) and extremely drug resistant (XDR) infections. Understanding newer evidence on polymyxin B is necessary to guide clinical decision making. Here, we present a literature review of polymyxin B in Gram-negative infections with update on its pharmacology.


2019 ◽  
pp. 193-201
Author(s):  
Tianye Niu ◽  
Xiaoli Sun ◽  
Pengfei Yang ◽  
Guohong Cao ◽  
Khin K. Tha ◽  
...  

2012 ◽  
Vol 20 (9) ◽  
pp. 830-839 ◽  
Author(s):  
T. Laiho ◽  
E. Kattainen ◽  
P. Åstedt-Kurki ◽  
H. Putkonen ◽  
N. Lindberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document