scholarly journals How development affects evolution

2021 ◽  
Author(s):  
Mauricio González-Forero ◽  
Andy Gardner

How development affects evolution. A mathematical framework that explicitly integrates development into evolution has recently been derived. Here we use this framework to analyse how development affects evolution. We show that, whilst selection pushes genetic and phenotypic evolution uphill on the fitness landscape, development determines the admissible evolutionary pathway, such that evolutionary outcomes occur at path peaks, which need not be peaks of the fitness landscape. Development can generate path peaks, triggering adaptive radiations, even on constant, single-peak landscapes. Phenotypic plasticity, niche construction, extra-genetic inheritance, and developmental bias variously alter the evolutionary path and hence the outcome. Selective development, whereby phenotype construction may point in the adaptive direction, may induce evolution either towards or away landscape peaks depending on the developmental constraints. Additionally, developmental propagation of phenotypic effects over age allows for the evolution of negative senescence. These results help explain empirical observations including punctuated equilibria, the paradox of stasis, the rarity of stabilizing selection, and negative senescence, and show that development has a major role in evolution.

Author(s):  
Daniel L. Hartl

This chapter could as well be titled “Population Genomics,” although many aspects of population genomics are integrated throughout the other chapters. It includes estimates of mutational variance and standing variance, phenotypic evolution under directional selection as measured by the linear selection gradient, and phenotypic evolution under stabilizing selection. It explores the strengths and limitations of genome-wide association studies of quantitative trait loci (QTLs) and expression (eQTLs) to detect genetic influencing complex traits in natural populations and genetic risk factors for complex diseases such as heart disease or diabetes. The number of genes affecting complex traits is considered, as well as evidence bearing on the issue of whether complex diseases are primarily affected by a very large number of genes, almost all of small effect, and how this bears on direct-to-consumer and over-the-counter genetic testing. The population genomics of adaptation is considered, including drug resistance, domestication, and local selection versus gene flow. The chapter concludes with the population genomics of speciation as illustrated by reinforcement of mating barriers, the reproducibility of phenotypic and genetic changes, and the accumulation of genetic incompatibilities.


2003 ◽  
Vol 81 (6) ◽  
pp. 971-978 ◽  
Author(s):  
Naoko Kato ◽  
Tadashi Miyashita

Crayfish have five pairs of abdominal limbs called pleopods. In males, the first and second pairs of pleopods are used for transferring spermatophores to the female during copulation. The remaining pleopods in males have no obvious function. Female crayfish use their pleopods to carry eggs. Accordingly, it is expected that the selection pressures that act on the pleopods differ between males and females. To test this hypothesis, we estimated modes of selection on pleopods in two species of crayfish (Procambarus clarkii and Pacifastacus trowbridgii) by comparing allometric relationships in functional and nonfunctional pleopods. Since pleopods are serially homologous traits, developmental constraints on these traits appear to be minimal. The lengths of the first male pleopods, used in copulation, showed lower allometric values and less dispersion around the regression line, suggesting that they have been under stabilizing selection. This likely occurs because the major selective force is the ability of males to copulate with females of various sizes. The pleopods of females showed higher allometric values than pleopods of males without an assigned function. This suggests that the pleopods of females have been under directional selection, most likely because they are longer and can therefore carry more eggs.


2009 ◽  
Vol 15 (2) ◽  
pp. 227-245 ◽  
Author(s):  
Ingo Paenke ◽  
Tadeusz J. Kawecki ◽  
Bernhard Sendhoff

The Baldwin effect can be observed if phenotypic learning influences the evolutionary fitness of individuals, which can in turn accelerate or decelerate evolutionary change. Evidence for both learning-induced acceleration and deceleration can be found in the literature. Although the results for both outcomes were supported by specific mathematical or simulation models, no general predictions have been achieved so far. Here we propose a general framework to predict whether evolution benefits from learning or not. It is formulated in terms of the gain function, which quantifies the proportional change of fitness due to learning depending on the genotype value. With an inductive proof we show that a positive gain-function derivative implies that learning accelerates evolution, and a negative one implies deceleration under the condition that the population is distributed on a monotonic part of the fitness landscape. We show that the gain-function framework explains the results of several specific simulation models. We also use the gain-function framework to shed some light on the results of a recent biological experiment with fruit flies.


2015 ◽  
Vol 112 (16) ◽  
pp. 4897-4902 ◽  
Author(s):  
Graham J. Slater

A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein–Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.


Author(s):  
Daohan Jiang ◽  
Jianzhi Zhang

ABSTRACTTo what extent the speed of mutational production of phenotypic variation determines the rate of long-term phenotypic evolution is a central question in evolutionary biology. In a recent study, Houle et al. addressed this question by studying the mutational variation, microevolution, and macroevolution of locations of vein intersections on fly wings, reporting very slow phenotypic evolution relative to the rates of mutational input, high phylogenetic signals of these traits, and a strong, linear correlation between the mutational variance of a trait and its rate of evolution. Houle et al. examined multiple models of phenotypic evolution but found none consistent with all these observations. Here we demonstrate that the purported linear correlation between mutational variance and evolutionary divergence is an artifact. More importantly, patterns of fly wing evolution are explainable by a simple model in which the wing traits are neutral or neutral within a range of phenotypic values but their evolutionary rates are reduced because most mutations affecting these traits are purged owing to their pleiotropic effects on other traits that are under stabilizing selection. We conclude that the evolutionary patterns of fly wing morphologies are explainable under the existing theoretical framework of phenotypic evolution.


Genetics ◽  
1994 ◽  
Vol 138 (2) ◽  
pp. 519-532
Author(s):  
S Gavrilets ◽  
A Hastings

Abstract We study a two locus model, with additive contributions to the phenotype, to explore the dynamics of different phenotypic characteristics under stabilizing selection and recombination. We demonstrate that the interaction of selection and recombination results in constraints on the mode of phenotypic evolution. Let Vg be the genic variance of the trait and CL be the contribution of linkage disequilibrium to the genotypic variance. We demonstrate that, independent of the initial conditions, the dynamics of the system on the plane (Vg, CL) are typically characterized by a quick approach to a straight line with slow evolution along this line afterward. We analyze how the mode and the rate of phenotypic evolution depend on the strength of selection relative to recombination, on the form of fitness function, and the difference in allelic effect. We argue that if selection is not extremely weak relative to recombination, linkage disequilibrium generated by stabilizing selection influences the dynamics significantly. We demonstrate that under these conditions, which are plausible in nature and certainly the case in artificial stabilizing selection experiments, the model can have a polymorphic equilibrium with positive linkage disequilibrium that is stable simultaneously with monomorphic equilibria.


Paleobiology ◽  
1986 ◽  
Vol 12 (4) ◽  
pp. 343-354 ◽  
Author(s):  
Russell Lande

Recent theoretical results demonstrate that a phenotypic version of Wright's shifting balance theory generates the dynamical pattern of punctuated equilibria. Thus, classical mechanisms of random genetic drift and selection for multiple adaptive peaks produce geologically long periods of relative stasis interrupted occasionally by very brief intervals of rapid change. A simple extension of this theory is made here to encompass developmental constraints between quantitative characters, manifested as phenotypic and genetic correlations between characters. Developmental constraints do not qualitatively alter the dynamical pattern of phenotypic evolution produced by selection and random genetic drift. A quantitative definition of stasis is proposed, based on a common taxonomic practice for recognizing subspecies. From this it is concluded that stasis is not the rule for quantitative measurements of detailed sequences for fossil species throughout most of their existence. Instead, periods of relative stasis are interspersed with gradual fluctuating trends, short intervals of rapid change, and discontinuities of subspecific magnitude.


1999 ◽  
Vol 02 (01) ◽  
pp. 65-90 ◽  
Author(s):  
Chirstoph Flamm ◽  
Ivo L. Hofacker ◽  
Peter F. Stadler

RNA secondary structures provide a unique computer model for investigating the most important aspects of structural and evolutionary biology. The existence of efficient algorithms for solving the folding problem, i.e., for predicting the secondary structure given only the sequence, allows the construction of realistic computer simulations. The notion of a "landscape" underlies both the structure formation (folding) and the (in vitro) evolution of RNA. Evolutionary adaptation may be seen as hill climbing process on a fitness landscape which is determined by the phenotype of the RNA molecule (within the model this is its secondary structure) and the selection constraints acting on the molecules. We find that a substantial fraction of point mutations do not change an RNA secondary structure. On the other hand, a comparable fraction of mutations leads to very different structures. This interplay of smoothness and ruggedness (or robustness and sensitivity) is a generic feature of both RNA and protein sequence-structure maps. Its consequences, "shape space covering" and "neutral networks" are inherited by the fitness landscapes and determine the dynamics of RNA evolution. Punctuated equilibria at phenotype level and a diffusion like evolution of the underlying genotypes are a characteristics feature of such models. As a practical application of these theoretical findings we have designed an algorithm that finds conserved (and therefore potentially functional substructures of RNA virus genomes from spares data sets. The folding dynamics of particular RNA molecule can also be studied successfully based on secondary structure. Given an RNA sequence, we consider the energy landscape formed by all possible conformations (secondary structures). A straight formward implementation of the Metropolis algorithm is sufficient to produce a quite realistic folding kinetics, allowing to identify meta-stable states and folding pathways. Just as in the protein case there are good and bad folders which can be distinguished by the properties of their landscapes.


Sign in / Sign up

Export Citation Format

Share Document