Complex Traits in Natural Populations

Author(s):  
Daniel L. Hartl

This chapter could as well be titled “Population Genomics,” although many aspects of population genomics are integrated throughout the other chapters. It includes estimates of mutational variance and standing variance, phenotypic evolution under directional selection as measured by the linear selection gradient, and phenotypic evolution under stabilizing selection. It explores the strengths and limitations of genome-wide association studies of quantitative trait loci (QTLs) and expression (eQTLs) to detect genetic influencing complex traits in natural populations and genetic risk factors for complex diseases such as heart disease or diabetes. The number of genes affecting complex traits is considered, as well as evidence bearing on the issue of whether complex diseases are primarily affected by a very large number of genes, almost all of small effect, and how this bears on direct-to-consumer and over-the-counter genetic testing. The population genomics of adaptation is considered, including drug resistance, domestication, and local selection versus gene flow. The chapter concludes with the population genomics of speciation as illustrated by reinforcement of mating barriers, the reproducibility of phenotypic and genetic changes, and the accumulation of genetic incompatibilities.

Genetics ◽  
2022 ◽  
Vol 220 (1) ◽  
Author(s):  
Sam Yeaman

Abstract Observations about the number, frequency, effect size, and genomic distribution of alleles associated with complex traits must be interpreted in light of evolutionary process. These characteristics, which constitute a trait’s genetic architecture, can dramatically affect evolutionary outcomes in applications from agriculture to medicine, and can provide a window into how evolution works. Here, I review theoretical predictions about the evolution of genetic architecture under spatially homogeneous, global adaptation as compared with spatially heterogeneous, local adaptation. Due to the tension between divergent selection and migration, local adaptation can favor “concentrated” genetic architectures that are enriched for alleles of larger effect, clustered in a smaller number of genomic regions, relative to expectations under global adaptation. However, the evolution of such architectures may be limited by many factors, including the genotypic redundancy of the trait, mutation rate, and temporal variability of environment. I review the circumstances in which predictions differ for global vs local adaptation and discuss where progress can be made in testing hypotheses using data from natural populations and lab experiments. As the field of comparative population genomics expands in scope, differences in architecture among traits and species will provide insights into how evolution works, and such differences must be interpreted in light of which kind of selection has been operating.


2007 ◽  
Vol 2 ◽  
pp. 117727190700200 ◽  
Author(s):  
Stephen F. Kingsmore ◽  
Ingrid E. Lindquist ◽  
Joann Mudge ◽  
William D. Beavis

Novel, comprehensive approaches for biomarker discovery and validation are urgently needed. One particular area of methodologic need is for discovery of novel genetic biomarkers in complex diseases and traits. Here, we review recent successes in the use of genome wide association (GWA) approaches to identify genetic biomarkers in common human diseases and traits. Such studies are yielding initial insights into the allelic architecture of complex traits. In general, it appears that complex diseases are associated with many common polymorphisms, implying profound genetic heterogeneity between affected individuals.


2021 ◽  
Vol 22 (14) ◽  
pp. 7612
Author(s):  
Anjali Chawla ◽  
Corina Nagy ◽  
Gustavo Turecki

The genetic architecture of complex traits is multifactorial. Genome-wide association studies (GWASs) have identified risk loci for complex traits and diseases that are disproportionately located at the non-coding regions of the genome. On the other hand, we have just begun to understand the regulatory roles of the non-coding genome, making it challenging to precisely interpret the functions of non-coding variants associated with complex diseases. Additionally, the epigenome plays an active role in mediating cellular responses to fluctuations of sensory or environmental stimuli. However, it remains unclear how exactly non-coding elements associate with epigenetic modifications to regulate gene expression changes and mediate phenotypic outcomes. Therefore, finer interrogations of the human epigenomic landscape in associating with non-coding variants are warranted. Recently, chromatin-profiling techniques have vastly improved our understanding of the numerous functions mediated by the epigenome and DNA structure. Here, we review various chromatin-profiling techniques, such as assays of chromatin accessibility, nucleosome distribution, histone modifications, and chromatin topology, and discuss their applications in unraveling the brain epigenome and etiology of complex traits at tissue homogenate and single-cell resolution. These techniques have elucidated compositional and structural organizing principles of the chromatin environment. Taken together, we believe that high-resolution epigenomic and DNA structure profiling will be one of the best ways to elucidate how non-coding genetic variations impact complex diseases, ultimately allowing us to pinpoint cell-type targets with therapeutic potential.


Genetics ◽  
2003 ◽  
Vol 163 (4) ◽  
pp. 1533-1548 ◽  
Author(s):  
Xiang-Yang Lou ◽  
George Casella ◽  
Ramon C Littell ◽  
Mark C K Yang ◽  
Julie A Johnson ◽  
...  

AbstractFor tightly linked loci, cosegregation may lead to nonrandom associations between alleles in a population. Because of its evolutionary relationship with linkage, this phenomenon is called linkage disequilibrium. Today, linkage disequilibrium-based mapping has become a major focus of recent genome research into mapping complex traits. In this article, we present a new statistical method for mapping quantitative trait loci (QTL) of additive, dominant, and epistatic effects in equilibrium natural populations. Our method is based on haplotype analysis of multilocus linkage disequilibrium and exhibits two significant advantages over current disequilibrium mapping methods. First, we have derived closed-form solutions for estimating the marker-QTL haplotype frequencies within the maximum-likelihood framework implemented by the EM algorithm. The allele frequencies of putative QTL and their linkage disequilibria with the markers are estimated by solving a system of regular equations. This procedure has significantly improved the computational efficiency and the precision of parameter estimation. Second, our method can detect marker-QTL disequilibria of different orders and QTL epistatic interactions of various kinds on the basis of a multilocus analysis. This can not only enhance the precision of parameter estimation, but also make it possible to perform whole-genome association studies. We carried out extensive simulation studies to examine the robustness and statistical performance of our method. The application of the new method was validated using a case study from humans, in which we successfully detected significant QTL affecting human body heights. Finally, we discuss the implications of our method for genome projects and its extension to a broader circumstance. The computer program for the method proposed in this article is available at the webpage http://www.ifasstat.ufl.edu/genome/~LD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xu-Qing Liu ◽  
Xin-Sheng Liu ◽  
Jian-Ying Rong ◽  
Feng Gao ◽  
Yan-Dong Wu ◽  
...  

AbstractThe challenge of decoding information about complex diseases hidden in huge number of single nucleotide polymorphism (SNP) genotypes is undertaken based on five dbGaP studies. Current genome-wide association studies have successfully identified many high-risk SNPs associated with diseases, but precise diagnostic models for complex diseases by these or more other SNP genotypes are still unavailable in the literature. We report that lung cancer, breast cancer and prostate cancer as the first three top cancers worldwide can be predicted precisely via 240–370 SNPs with accuracy up to 99% according to leave-one-out and 10-fold cross-validation. Our findings (1) confirm an early guess of Dr. Mitchell H. Gail that about 300 SNPs are needed to improve risk forecasts for breast cancer, (2) reveal an incredible fact that SNP genotypes may contain almost all information that one wants to know, and (3) show a hopeful possibility that complex diseases can be precisely diagnosed by means of SNP genotypes without using phenotypical features. In short words, information hidden in SNP genotypes can be extracted in efficient ways to make precise diagnoses for complex diseases.


Heredity ◽  
2021 ◽  
Author(s):  
Johanna Denkena ◽  
Frank Johannes ◽  
Maria Colomé-Tatché

AbstractFailure to maintain DNA methylation patterns during plant development can occasionally give rise to so-called “spontaneous epimutations”. These stochastic methylation changes are sometimes heritable across generations and thus accumulate in plant genomes over time. Recent evidence indicates that spontaneous epimutations have a major role in shaping patterns of methylation diversity in plant populations. Using single CG dinucleotides as units of analysis, previous work has shown that the epimutation rate is several orders of magnitude higher than the genetic mutation rate. While these large rate differences have obvious implications for understanding genome-methylome co-evolution, the functional relevance of single CG methylation changes remains questionable. In contrast to single CG, solid experimental evidence has linked methylation gains and losses in larger genomic regions with transcriptional variation and heritable phenotypic effects. Here we show that such region-level changes arise stochastically at about the same rate as those at individual CG sites, are only marginal dependent on region size and cytosine density, but strongly dependent on chromosomal location. We also find consistent evidence that region-level epimutations are not restricted to CG contexts but also frequently occur in non-CG regions at the genome-wide scale. Taken together, our results support the view that many differentially methylated regions (DMRs) in natural populations originate from epimutation events and may not be effectively tagged by proximal SNPs. This possibility reinforces the need for epigenome-wide association studies (EWAS) in plants as a way to identify the epigenetic basis of complex traits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao-Yu Guo ◽  
Reng-Hong Wang ◽  
Hsin-Chou Yang

AbstractAfter the genome-wide association studies (GWAS) era, whole-genome sequencing is highly engaged in identifying the association of complex traits with rare variations. A score-based variance-component test has been proposed to identify common and rare genetic variants associated with complex traits while quickly adjusting for covariates. Such kernel score statistic allows for familial dependencies and adjusts for random confounding effects. However, the etiology of complex traits may involve the effects of genetic and environmental factors and the complex interactions between genes and the environment. Therefore, in this research, a novel method is proposed to detect gene and gene-environment interactions in a complex family-based association study with various correlated structures. We also developed an R function for the Fast Gene-Environment Sequence Kernel Association Test (FGE-SKAT), which is freely available as supplementary material for easy GWAS implementation to unveil such family-based joint effects. Simulation studies confirmed the validity of the new strategy and the superior statistical power. The FGE-SKAT was applied to the whole genome sequence data provided by Genetic Analysis Workshop 18 (GAW18) and discovered concordant and discordant regions compared to the methods without considering gene by environment interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory R. Keele ◽  
Jeremy W. Prokop ◽  
Hong He ◽  
Katie Holl ◽  
John Littrell ◽  
...  

AbstractChronic kidney disease (CKD), which can ultimately progress to kidney failure, is influenced by genetics and the environment. Genes identified in human genome wide association studies (GWAS) explain only a small proportion of the heritable variation and lack functional validation, indicating the need for additional model systems. Outbred heterogeneous stock (HS) rats have been used for genetic fine-mapping of complex traits, but have not previously been used for CKD traits. We performed GWAS for urinary protein excretion (UPE) and CKD related serum biochemistries in 245 male HS rats. Quantitative trait loci (QTL) were identified using a linear mixed effect model that tested for association with imputed genotypes. Candidate genes were identified using bioinformatics tools and targeted RNAseq followed by testing in a novel in vitro model of human tubule, hypoxia-induced damage. We identified two QTL for UPE and five for serum biochemistries. Protein modeling identified a missense variant within Septin 8 (Sept8) as a candidate for UPE. Sept8/SEPTIN8 expression increased in HS rats with elevated UPE and tubulointerstitial injury and in the in vitro hypoxia model. SEPTIN8 is detected within proximal tubule cells in human kidney samples and localizes with acetyl-alpha tubulin in the culture system. After hypoxia, SEPTIN8 staining becomes diffuse and appears to relocalize with actin. These data suggest a role of SEPTIN8 in cellular organization and structure in response to environmental stress. This study demonstrates that integration of a rat genetic model with an environmentally induced tubule damage system identifies Sept8/SEPTIN8 and informs novel aspects of the complex gene by environmental interactions contributing to CKD risk.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 258
Author(s):  
Karim Karimi ◽  
Duy Ngoc Do ◽  
Mehdi Sargolzaei ◽  
Younes Miar

Characterizing the genetic structure and population history can facilitate the development of genomic breeding strategies for the American mink. In this study, we used the whole genome sequences of 100 mink from the Canadian Centre for Fur Animal Research (CCFAR) at the Dalhousie Faculty of Agriculture (Truro, NS, Canada) and Millbank Fur Farm (Rockwood, ON, Canada) to investigate their population structure, genetic diversity and linkage disequilibrium (LD) patterns. Analysis of molecular variance (AMOVA) indicated that the variation among color-types was significant (p < 0.001) and accounted for 18% of the total variation. The admixture analysis revealed that assuming three ancestral populations (K = 3) provided the lowest cross-validation error (0.49). The effective population size (Ne) at five generations ago was estimated to be 99 and 50 for CCFAR and Millbank Fur Farm, respectively. The LD patterns revealed that the average r2 reduced to <0.2 at genomic distances of >20 kb and >100 kb in CCFAR and Millbank Fur Farm suggesting that the density of 120,000 and 24,000 single nucleotide polymorphisms (SNP) would provide the adequate accuracy of genomic evaluation in these populations, respectively. These results indicated that accounting for admixture is critical for designing the SNP panels for genotype-phenotype association studies of American mink.


Sign in / Sign up

Export Citation Format

Share Document