scholarly journals Developmental Constraints Do Not Influence Long-Term Phenotypic Evolution of Marsupial Forelimbs as Revealed by Interspecific Disparity and Integration Patterns

2020 ◽  
Vol 195 (3) ◽  
pp. 547-560 ◽  
Author(s):  
Alberto Martín-Serra ◽  
Roger B. J. Benson
2021 ◽  
Author(s):  
Mauricio González-Forero ◽  
Andy Gardner

How development affects evolution. A mathematical framework that explicitly integrates development into evolution has recently been derived. Here we use this framework to analyse how development affects evolution. We show that, whilst selection pushes genetic and phenotypic evolution uphill on the fitness landscape, development determines the admissible evolutionary pathway, such that evolutionary outcomes occur at path peaks, which need not be peaks of the fitness landscape. Development can generate path peaks, triggering adaptive radiations, even on constant, single-peak landscapes. Phenotypic plasticity, niche construction, extra-genetic inheritance, and developmental bias variously alter the evolutionary path and hence the outcome. Selective development, whereby phenotype construction may point in the adaptive direction, may induce evolution either towards or away landscape peaks depending on the developmental constraints. Additionally, developmental propagation of phenotypic effects over age allows for the evolution of negative senescence. These results help explain empirical observations including punctuated equilibria, the paradox of stasis, the rarity of stabilizing selection, and negative senescence, and show that development has a major role in evolution.


2020 ◽  
Vol 287 (1938) ◽  
pp. 20201585
Author(s):  
A. M. Chira ◽  
C. R. Cooney ◽  
J. A. Bright ◽  
E. J. R. Capp ◽  
E. C. Hughes ◽  
...  

Competition for shared resources represents a fundamental driver of biological diversity. However, the tempo and mode of phenotypic evolution in deep-time has been predominantly investigated using trait evolutionary models which assume that lineages evolve independently from each other. Consequently, the role of species interactions in driving macroevolutionary dynamics remains poorly understood. Here, we quantify the prevalence for signatures of competition between related species in the evolution of ecomorphological traits across the bird radiation. We find that mechanistic trait models accounting for the effect of species interactions on phenotypic divergence provide the best fit for the data on at least one trait axis in 27 out of 59 clades ranging between 21 and 195 species. Where it occurs, the signature of competition generally coincides with positive species diversity-dependence, driven by the accumulation of lineages with similar ecologies, and we find scarce evidence for trait-dependent or negative diversity-dependent phenotypic evolution. Overall, our results suggest that the footprint of interspecific competition is often eroded in long-term patterns of phenotypic diversification, and that other selection pressures may predominantly shape ecomorphological diversity among extant species at macroevolutionary scales.


Author(s):  
Daohan Jiang ◽  
Jianzhi Zhang

ABSTRACTTo what extent the speed of mutational production of phenotypic variation determines the rate of long-term phenotypic evolution is a central question in evolutionary biology. In a recent study, Houle et al. addressed this question by studying the mutational variation, microevolution, and macroevolution of locations of vein intersections on fly wings, reporting very slow phenotypic evolution relative to the rates of mutational input, high phylogenetic signals of these traits, and a strong, linear correlation between the mutational variance of a trait and its rate of evolution. Houle et al. examined multiple models of phenotypic evolution but found none consistent with all these observations. Here we demonstrate that the purported linear correlation between mutational variance and evolutionary divergence is an artifact. More importantly, patterns of fly wing evolution are explainable by a simple model in which the wing traits are neutral or neutral within a range of phenotypic values but their evolutionary rates are reduced because most mutations affecting these traits are purged owing to their pleiotropic effects on other traits that are under stabilizing selection. We conclude that the evolutionary patterns of fly wing morphologies are explainable under the existing theoretical framework of phenotypic evolution.


Nature ◽  
2014 ◽  
Vol 517 (7534) ◽  
pp. 369-372 ◽  
Author(s):  
Germán Plata ◽  
Christopher S. Henry ◽  
Dennis Vitkup
Keyword(s):  

2021 ◽  
Vol 288 (1943) ◽  
pp. 20202047
Author(s):  
Emanuela Di Martino ◽  
Lee Hsiang Liow

Long-term patterns of phenotypic change are the cumulative results of tens of thousands to millions of years of evolution. Yet, empirical and theoretical studies of phenotypic selection are largely based on contemporary populations. The challenges in studying phenotypic evolution, in particular trait–fitness associations in the deep past, are barriers to linking micro- and macroevolution. Here, we capitalize on the unique opportunity offered by a marine colonial organism commonly preserved in the fossil record to investigate trait–fitness associations over 2 Myr. We use the density of female polymorphs in colonies of Antartothoa tongima as a proxy for fecundity, a fitness component, and investigate multivariate signals of trait–fitness associations in six time intervals on the backdrop of Pleistocene climatic shifts. We detect negative trait–fitness associations for feeding polymorph (autozooid) sizes, positive associations for autozooid shape but no particular relationship between fecundity and brood chamber size. In addition, we demonstrate that long-term trait patterns are explained by palaeoclimate (as approximated by ∂ 18 O), and to a lesser extent by ecological interactions (i.e. overgrowth competition and substrate crowding). Our analyses show that macroevolutionary outcomes of trait evolution are not a simple scaling-up from the trait–fitness associations.


1988 ◽  
Vol 51 (2) ◽  
pp. 137-148 ◽  
Author(s):  
Michael Lynch

SummaryBy application of the neutral model of phenotypic evolution, quantitative estimates of the rate of input of genetic variance by polygenic mutation can be extracted from divergence experiments as well as from the response of an inbred base population to selection. The analytical methods are illustrated through a survey of data on a diversity of organisms including Drosophila, Tribolium, mice, and several crop species. The mutational rate of introduction of genetic variance (Vm) scaled by the environmental variance (VE) is shown to vary between populations, species, and characters with a range of approximately 10−4 to 5 × 10−2. Vm/VE for Drosophila viability is somewhat below this range, while hybrid dysgenesis may temporarily inflate Vm/VE beyond 10−1. Potential sources of bias and error in the estimation of Vm are discussed, as are the practical implications of the observed limits to Vm/VE for projecting the long-term response to selection and for testing adaptational hypotheses.


2018 ◽  
Author(s):  
Kaitlin J. Fisher ◽  
Sean W. Buskirk ◽  
Ryan C. Vignogna ◽  
Daniel A. Marad ◽  
Gregory I. Lang

ABSTRACTWhole genome duplications (WGD) represent important evolutionary events that shape future adaptation. WGDs are known to have occurred in the lineages leading to plants, fungi, and vertebrates. Changes to ploidy level impact the rate and spectrum of beneficial mutations and thus the rate of adaptation. Laboratory evolution experiments initiated with haploid Saccharomyces cerevisiae cultures repeatedly experience WGD. We report recurrent genome duplication in 46 haploid yeast populations evolved for 4,000 generations. We find that WGD confers a fitness advantage, and this immediate fitness gain is accompanied by a shift in genomic and phenotypic evolution. The presence of ploidy-enriched targets of selection and structural variants reveals that autodiploids utilize adaptive paths inaccessible to haploids. We find that autodiploids accumulate recessive deleterious mutations, indicating an increased capacity for neutral evolution. Finally, we report that WGD results in a reduced adaptation rate, indicating a trade-off between immediate fitness gains and long term adaptability.


2018 ◽  
Vol 49 (1) ◽  
pp. 499-522 ◽  
Author(s):  
Frietson Galis ◽  
Johan A.J. Metz ◽  
Jacques J.M. van Alphen

We review the evolutionary importance of developmental mechanisms in constraining evolutionary changes in animals—in other words, developmental constraints. We focus on hard constraints that can act on macroevolutionary timescales. In particular, we discuss the causes and evolutionary consequences of the ancient metazoan constraint that differentiated cells cannot divide and constraints against changes of phylotypic stages in vertebrates and other higher taxa. We conclude that in all cases these constraints are caused by complex and highly controlled global interactivity of development, the disturbance of which has grave consequences. Mutations that affect such global interactivity almost unavoidably have many deleterious pleiotropic effects, which will be strongly selected against and will lead to long-term evolutionary stasis. The discussed developmental constraints have pervasive consequences for evolution and critically restrict regeneration capacity and body plan evolution.


Sign in / Sign up

Export Citation Format

Share Document