scholarly journals The Listening Zone of Human Electrocorticographic Field Potential Recordings

2021 ◽  
Author(s):  
Meredith J McCarty ◽  
Oscar Woolnough ◽  
John C Mosher ◽  
John Seymour ◽  
Nitin Tandon

Intracranial electroencephalographic (icEEG) recordings provide invaluable insights into neural dynamics in humans due to their unmatched spatiotemporal resolution. Yet, such recordings reflect the combined activity of multiple underlying generators, confounding the ability to resolve spatially distinct neural sources. To empirically quantify the listening zone of icEEG recordings, we computed the correlations between signals as a function of distance (expressed as full width at half maximum; FWHM) between 8,752 recording sites in 71 patients implanted with either subdural electrodes (SDE), stereo-encephalography electrodes (sEEG), or high-density sEEG electrodes. As expected, for both SDE and sEEG electrodes, higher frequency signals exhibited a sharper fall off relative to lower frequency signals. For broadband high gamma (BHG) activity, the mean FWHM of SDEs (6.6 ± 2.5 mm) and sEEGs in gray matter (7.14 ± 1.7 mm) was not significantly different, however the FWHM for low frequencies recorded by sEEGs was 2.45 mm smaller than SDEs. White matter sEEG electrodes showed much lower power for frequencies 17 to 200 Hz (q < 0.01) and a much broader decay (11.3 ± 3.2 mm) than gray matter electrodes (7.14 ± 1.7 mm). The use of a bipolar referencing scheme significantly lowered FWHM for sEEG electrodes, as compared with a white matter reference or a common average reference. These results outline the influence of array design, spectral bands, and referencing schema on local field potential recordings and source localization in icEEG recordings in humans. The metrics we derive have immediate relevance to the analysis and interpretation of both cognitive and epileptic data.

2012 ◽  
Vol 117 (6) ◽  
pp. 1150-1154 ◽  
Author(s):  
Edjah K. Nduom ◽  
Stuart Walbridge ◽  
Russell R. Lonser

Object Although pulsatile and continuous infusion paradigms have been described for convective delivery of drugs, the effectiveness and properties of each flow paradigm are unknown. To determine the effectiveness and properties of pulsatile and continuous convective infusion paradigms, the authors compared these convective flow methods in the gray and white matter of primates. Methods Six primates (Macaca mulatta) underwent convective infusion of Gd-DPTA (5 mM) into the cerebral gray matter (thalamus) or white matter (frontal lobe) using pulsed (intermittent pulses of 15 μl/min) or continuous (1 μl/min) convective flow. Results were assessed by clinical MRI and histological analyses. Results Distribution of Gd-DTPA infusate in gray and white matter by pulsed and continuous flow was clearly identified using MRI, which revealed that both convective flow methods demonstrated an increase in the volume of distribution (Vd) with increasing volume of infusion (Vi) in the surrounding gray and white matter. Although the mean (± SD) gray matter Vd:Vi ratio for the pulsed infusions (4.2 ± 0.5) was significantly lower than the mean Vd:Vi ratio for continuous infusions (5.4 ± 0.5; a 22% difference [p = 0.0006]), the difference between pulsed (3.8 ± 0.4) and continuous (4.3 ± 1.2) infusions in white matter was not significantly different (p = 0.3). Pulsed infusions were associated with more leakback (12.3% ± 6.4% of Vi) than continuous infusions (3.9% ± 7.8%), although this difference was not significant (p = 0.2). All animals tolerated the infusions and there was no histological evidence of tissue injury at the infusion sites. Conclusions Although pulsed and continuous infusion flow paradigms can be safely and effectively used for convective delivery into both gray and white matter, continuous infusion is associated with a higher Vd:Vi ratio than pulsatile infusion in gray matter. High rates of infusion (15 μl/min) can be used to deliver infusate without any significant leakback and without any clinical or histological evidence of injury.


2012 ◽  
Vol 117 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Alexander Ksendzovsky ◽  
Stuart Walbridge ◽  
Richard C. Saunders ◽  
Ashok R. Asthagiri ◽  
John D. Heiss ◽  
...  

Object Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Methods Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Results Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was –2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. Conclusions The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white matter spread after infusion cessation enhances distribution of this large nanoparticle. Real-time MRI studies of coinfused Gd-DTPA (1 mM) can be used for accurate tracking of distribution during infusion of M13 bacteriophage.


2016 ◽  
Vol 28 (5) ◽  
pp. 882-913 ◽  
Author(s):  
Vinay Shirhatti ◽  
Ayon Borthakur ◽  
Supratim Ray

Brain signals are often analyzed in the spectral domain, where the power spectral density (PSD) and phase differences and consistency can reveal important information about the network. However, for proper interpretation, it is important to know whether these measures depend on stimulus/behavioral conditions or the reference scheme used to analyze data. We recorded local field potential (LFP) from an array of microelectrodes chronically implanted in area V1 of monkeys under different stimulus/behavioral conditions and computed PSD slopes, coherence, and phase difference between LFPs as a function of frequency and interelectrode distance while using four reference schemes: single wire, average, bipolar, and current source density. PSD slopes were dependent on reference scheme at low frequencies (below 200 Hz) but became invariant at higher frequencies. Average phase differences between sites also depended critically on referencing, switching from 0 degrees for single-wire to 180 degrees for average reference. Results were consistent across different stimulus/behavioral conditions. We were able to account for these results based on the coherence profile across sites and properties of the spectral estimator. Our results show that using different reference schemes can have drastic effects on phase differences and PSD slopes and therefore must be interpreted carefully to gain insights about network properties.


Author(s):  
Steven M. Le Vine ◽  
David L. Wetzel

In situ FT-IR microspectroscopy has allowed spatially resolved interrogation of different parts of brain tissue. In previous work the spectrrscopic features of normal barin tissue were characterized. The white matter, gray matter and basal ganglia were mapped from appropriate peak area measurements from spectra obtained in a grid pattern. Bands prevalent in white matter were mostly associated with the lipid. These included 2927 and 1469 cm-1 due to CH2 as well as carbonyl at 1740 cm-1. Also 1235 and 1085 cm-1 due to phospholipid and galactocerebroside, respectively (Figs 1and2). Localized chemical changes in the white matter as a result of white matter diseases have been studied. This involved the documentation of localized chemical evidence of demyelination in shiverer mice in which the spectra of white matter lacked the marked contrast between it and gray matter exhibited in the white matter of normal mice (Fig. 3).The twitcher mouse, a model of Krabbe’s desease, was also studied. The purpose in this case was to look for a localized build-up of psychosine in the white matter caused by deficiencies in the enzyme responsible for its breakdown under normal conditions.


2018 ◽  
Vol 15 (14) ◽  
pp. 1354-1360 ◽  
Author(s):  
Ping-Song Chou ◽  
Yi-Hui Kao ◽  
Meng-Ni Wu ◽  
Mei-Chuan Chou ◽  
Chun-Hung Chen ◽  
...  

Background: Cerebrovascular pathologies and hypertension could play a vital role in Alzheimer disease (AD) progression. However, whether cerebrovascular pathologies and hypertension accelerate the AD progression through an independent or interaction effect is unknown. Objective: To investigate the effect of the interactions of cerebrovascular pathologies and hypertension on AD progression. Method: A retrospective longitudinal study was conducted to compare AD courses in patients with different severities of cerebral White Matter Changes (WMCs) in relation to hypertension. Annual comprehensive psychometrics were performed. WMCs were rated using a rating scale for Age-related WMCs (ARWMC). Results: In total, 278 patients with sporadic AD were enrolled in this study. The mean age of the patients was 76.6 ± 7.4 years, and 166 patients had hypertension. Among AD patients with hypertension, those with deterioration in clinical dementia rating-sum of box (CDR-SB) and CDR had significantly severe baseline ARWMC scales in total (CDR-SB: 5.8 vs. 3.6, adjusted P = 0.04; CDR: 6.4 vs. 4.4, adjusted P = 0.04) and frontal area (CDR-SB: 2.4 vs. 1.2, adjusted P = 0.01; CDR: 2.4 vs. 1.7, adjusted P < 0.01) compared with those with no deterioration in psychometrics after adjustment for confounders. By contrast, among AD patients without hypertension, no significant differences in ARWMC scales were observed between patients with and without deterioration. Conclusion: The effect of cerebrovascular pathologies on AD progression between those with and without hypertension might differ. An interaction but not independent effect of hypertension and WMCs on the progression of AD is possible.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Malo Gaubert ◽  
Catharina Lange ◽  
Antoine Garnier-Crussard ◽  
Theresa Köbe ◽  
Salma Bougacha ◽  
...  

Abstract Background White matter hyperintensities (WMH) are frequently found in Alzheimer’s disease (AD). Commonly considered as a marker of cerebrovascular disease, regional WMH may be related to pathological hallmarks of AD, including beta-amyloid (Aβ) plaques and neurodegeneration. The aim of this study was to examine the regional distribution of WMH associated with Aβ burden, glucose hypometabolism, and gray matter volume reduction. Methods In a total of 155 participants (IMAP+ cohort) across the cognitive continuum from normal cognition to AD dementia, FLAIR MRI, AV45-PET, FDG-PET, and T1 MRI were acquired. WMH were automatically segmented from FLAIR images. Mean levels of neocortical Aβ deposition (AV45-PET), temporo-parietal glucose metabolism (FDG-PET), and medial-temporal gray matter volume (GMV) were extracted from processed images using established AD meta-signature templates. Associations between AD brain biomarkers and WMH, as assessed in region-of-interest and voxel-wise, were examined, adjusting for age, sex, education, and systolic blood pressure. Results There were no significant associations between global Aβ burden and region-specific WMH. Voxel-wise WMH in the splenium of the corpus callosum correlated with greater Aβ deposition at a more liberal threshold. Region- and voxel-based WMH in the posterior corpus callosum, along with parietal, occipital, and frontal areas, were associated with lower temporo-parietal glucose metabolism. Similarly, lower medial-temporal GMV correlated with WMH in the posterior corpus callosum in addition to parietal, occipital, and fontal areas. Conclusions This study demonstrates that local white matter damage is correlated with multimodal brain biomarkers of AD. Our results highlight modality-specific topographic patterns of WMH, which converged in the posterior white matter. Overall, these cross-sectional findings corroborate associations of regional WMH with AD-typical Aß deposition and neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document