scholarly journals Inefficient exploitation of accessory receptors reduces the sensitivity of chimeric antigen receptors.

2021 ◽  
Author(s):  
Jake Burton ◽  
Jesus A Siller-Farfan ◽  
Johannes Pettmann ◽  
Benjamin Salzer ◽  
Mikhail Kutuzov ◽  
...  

Chimeric antigen receptors (CARs) can re-direct T cells to target abnormal cells but their activity is limited by a profound defect in antigen sensitivity, the source of which remains unclear. Here, we show that CARs have a > 100-fold lower antigen sensitivity compared to the TCR when antigen is presented on antigen-presenting-cells, but nearly identical sensitivity when antigen is presented as purified protein in isolation. Given that the TCR uses other, accessory, receptors to achieve high sensitivity, we screened prominent accessory receptors by presenting their purified ligands together with antigen. We found that ligating the adhesion receptor CD2 or LFA-1 improved antigen sensitivity for the TCR by > 100-fold, whereas for CARs the improvement was < 10-fold. We reproduced these findings using target cells where the CD2 and/or LFA-1 interaction were abrogated. Sensitivity can be partially restored by fusing the CAR variable domains to the TCR CD3ϵ subunit (also known as a TRuC) and fully restored when exchanging the TCRαβ variable domains for those of the CAR (also known as a STAR). Our study localises the defect in CAR sensitivity to inefficient use of accessory receptors and suggests approaches to increase sensitivity.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 951-951 ◽  
Author(s):  
Michael Hudecek ◽  
Anne Silva ◽  
Paula L. Kosasih ◽  
Yvonne Y. Chen ◽  
Cameron J. Turtle ◽  
...  

Abstract Abstract 951 Adoptive immunotherapy with T cells engineered by gene transfer to express CD19-specific chimeric antigen receptors (CARs) has the potential to induce remissions in patients with advanced B cell malignancies. CARs are synthetic receptors with an extracellular antigen-binding domain (scFv), a spacer domain that provides separation of the scFv from the cell membrane and an intracellular signaling module, most commonly the CD3ζ chain and one or more costimulatory domains such as CD28 or 4-1BB. Several clinical trials with CD19-CAR T cells in small cohorts of patients with B cell tumors have been reported with variable results. Although most studies have used the CD19-specific FMC63 scFv as the tumor-targeting moiety, the extracellular, transmembrane and intracellular CAR domains used in each trial have been distinct, and an emerging paradigm is that including costimulation in the design of the CAR is key to achieving anti-tumor activity in vivo. In this study, we analyzed the influence of extracellular spacer domain length on the in vitro and in vivo function of CD19-CARs. We constructed a panel of four CD19-CARs comprised of the FMC63 scFv and either a long spacer derived from the IgG4-Fc Hinge-CH2-CH3 domain (229 AA) or a short Hinge domain only spacer (12 AA). Each CAR contained a signaling module of CD3ζ with CD28 (short/CD28; long/CD28) or 4-1BB (short/4-1BB; long/4-1BB). We transduced CD8+ CD45RO+ CD62L+central memory T cells of normal donors with each of the CARs, enriched transduced T cells to >90% purity by immunomagnetic selection using a tEGFR marker encoded in the CAR vector, and expanded CAR transduced T cells using a uniform culture protocol. We compared the in vitro function of T cell lines expressing each of the CD19-CARs and confirmed specific cytolytic activity against CD19+ target cells including K562/CD19, and Raji and JeKo-1 lymphoma cells. Quantitative cytokine analyses showed higher levels of IFN-γ, TNF-α, IL-2 production in T cells expressing CD19-CARs with CD28 costimulatory domain compared to the corresponding constructs with 4-1BB, consistent with prior work. T cells expressing each of the CD19-CARs proliferated in vitro after stimulation with K562/CD19 and Raji tumor cells by CFSE dye dilution, with the strongest proliferation observed in T cells expressing the CD19-CAR ‘long/CD28’, consistent with the highest levels of IL-2 production by T cells expressing this construct. We then analyzed the in vivo anti-tumor efficacy of each CD19-CAR in immunodeficient NOD/SCID/g−/− (NSG) mice engrafted with firefly luciferase transduced Raji cells. Tumor was inoculated on day 0, and once tumor was established (day 7), the mice received a single dose of 2.5×106̂ T cells expressing each CD19-CAR, a tEGFR control vector, or were left untreated. Surprisingly, only T cells expressing CD19-CARs with a short spacer domain (short/CD28 and short/4-1BB) eradicated the Raji tumors and led to long-term tumor-free survival of all mice. T cells expressing CD19-CARs with a long spacer domain (long/CD28 and long/4-1BB) did not confer a significant anti-tumor effect and all mice expired from systemic lymphoma at a similar time as control and untreated mice. The anti-tumor efficacy in vivo of T cells modified with long spacer CD19-CARs could not be improved by increasing CAR T cell dose 4 fold, or by including additional costimulatory domains into the CD19-CAR (long/CD28:4-1BB). Serial analyses in peripheral blood, bone marrow and spleen showed dramatically lower numbers of transferred T cells in mice treated with long spacer CD19-CARs compared to mice treated with short spacer CD19-CARs or control T cells. Further analysis revealed that despite strong activation in vivo as assessed by upregulation of CD69 and CD25, CD19-CARs with long extracellular spacer domain induced a high rate of activation induced T cell death in vivo. Collectively, these results demonstrate that the extracellular spacer domain that lacks intrinsic signaling function is critical in the design of effective CD19-CARs, and illustrates that tailoring spacer length is likely to be essential for designing effective CARs specific for other tumor antigens. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 86 (9) ◽  
pp. 2525-2534 ◽  
Author(s):  
M. Ceppi ◽  
M. G. M. de Bruin ◽  
T. Seuberlich ◽  
C. Balmelli ◽  
S. Pascolo ◽  
...  

Vaccination of pigs against Classical swine fever virus (CSFV) by using live-virus vaccines induces early protection before detectable humoral immune responses. Immunological analyses indicate that this is associated with T-cell activation, underlining the importance of targeting cytotoxic T-lymphocyte (CTL) responses for vaccine improvement. Antigen-presenting cells (APCs) transfected with mRNA encoding structural protein E2 or non-structural viral proteins NS3–NS4A were used to identify viral genes encoding CTL epitopes. Monocyte-derived dendritic cells (DCs) and fibrocytes served as the APCs. In vitro translation of the mRNA and microscopic analysis of transfected cells demonstrated that E2 and NS3–NS4A could be identified. APCs transfected with either of the mRNA molecules restimulated CSFV-specific T cells to produce gamma interferon and specific cytotoxic activity against CSFV-infected target cells. The presence of CTL epitopes on E2 was confirmed by using d/d-haplotype MAX cells expressing E2 constitutively as target cells in d/d-haplotype CTL assays. A potent CTL activity against E2 was detected early (1–3 weeks) after CSFV challenge. This work corroborates the existence of CTL epitopes within the non-structural protein domain NS3–NS4A of CSFV. Furthermore, epitopes on the E2 protein can also now be classified as targets for CTLs, having important implications for vaccine design, especially subunit vaccines. As for the use of mRNA-transfected APCs, this represents a simple and efficient method to identify viral genes encoding CTL epitopes in outbred populations.


2006 ◽  
Vol 203 (8) ◽  
pp. 1851-1858 ◽  
Author(s):  
Guang Yu ◽  
Xuemin Xu ◽  
Minh Diem Vu ◽  
Elizabeth D. Kilpatrick ◽  
Xian Chang Li

Natural killer (NK) cells are programmed to kill target cells without prior antigen priming. Because of their potent cytolytic activities, NK cells are one of the key cell types involved in dismantling allografts. However, in certain transplant models, NK cells also express potent immunoregulatory properties that promote tolerance induction. The precise mechanism for such striking dichotomy remains unknown. In the present study, we showed in a skin transplant model that the skin allografts contain a subset of antigen-presenting cells (APCs) that can home to the recipient mice. We also showed that such graft-derived APCs are usually destroyed by the host NK cells. But in the absence of NK cells, donor APCs can survive and then migrate to the host lymphoid and extralymphoid sites where they directly stimulate the activation of alloreactive T cells. T cells activated in the absence of NK cells are more resistant to costimulatory blockade treatment, and under such conditions stable skin allograft survival is difficult to achieve. Our study identified a novel role for NK cells in regulating T cell priming in transplant models, and may have important clinical implications in tolerance induction.


Acta Naturae ◽  
2017 ◽  
Vol 9 (1) ◽  
pp. 6-14 ◽  
Author(s):  
S. V. Kulemzin ◽  
V. V. Kuznetsova ◽  
M. Mamonkin ◽  
A. V. Taranin ◽  
А. A. Gorchakov

Chimeric antigen receptors (CARs) are recombinant protein molecules that redirect cytotoxic lymphocytes toward malignant and other target cells. The high feasibility of manufacturing CAR-modified lymphocytes for the therapy of cancer has spurred the development and optimization of new CAR T cells directed against a broad range of target antigens. In this review, we describe the main structural and functional elements constituting a CAR, discuss the roles of these elements in modulating the anti-tumor activity of CAR T cells, and highlight alternative approaches to CAR engineering.


2014 ◽  
Vol 275 (1-2) ◽  
pp. 65-66
Author(s):  
Priscilla Lee ◽  
Alan Smith ◽  
Yuhong Yang ◽  
Amanda Selhorst ◽  
Michael Racke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document