scholarly journals The endoplasmic reticulum adopts two distinct tubule forms

2021 ◽  
Author(s):  
Bowen Wang ◽  
Zhiheng Zhao ◽  
Michael Xiong ◽  
Rui Yan ◽  
Ke Xu

The endoplasmic reticulum (ER) is a versatile organelle with diverse functions. Through super-resolution microscopy, we show that the peripheral ER in the mammalian cell adopts two distinct forms of tubules. Whereas an ultrathin form, R1, is consistently covered by ER-membrane curvature-promoting proteins, e.g., Rtn4 in the native cell, in the second form, R2, Rtn4 and analogs are arranged into two parallel lines at a conserved separation of ~105 nm over long ranges. The two tubule forms together account for ~90% of the total tubule length in the cell, with either one being dominant in different cell types. The R1-R2 dichotomy and the final tubule geometry are both co-regulated by Rtn4 (and analogs) and the ER sheet-maintaining protein Climp63, which respectively define the edge curvature and lumen height of the R2 tubules to generate a ribbon-like structure of well-defined width. Accordingly, the R2 tubule width correlates positively with the Climp63 intralumenal size. The R1 and R2 tubules undergo active remodeling at the second/sub-second time scales as they differently accommodate proteins, with the former effectively excluding ER-luminal proteins and ER-membrane proteins with large intraluminal domains. We thus uncover a dynamic structural dichotomy for ER tubules with intriguing functional implications.

2021 ◽  
Author(s):  
Ke Xu ◽  
Bowen Wang ◽  
Zhiheng Zhao ◽  
Michael Xiong ◽  
Rui Yan

Abstract Being the largest and most expansive organelle in the cell, the endoplasmic reticulum (ER) carries diverse key functions from protein and lipid synthesis, protein folding and modification, transport, calcium storage, to organelle interactions1-6. The shaping mechanism of this complex, membrane-bounded organelle is thus of fundamental significance7-21. Using super-resolution microscopy, we uncover the coexistence of two distinct, well-defined forms of ER tubules in the mammalian cell. Whereas an ultrathin form, R1, is consistently covered by the membrane curvature-promoting protein Rtn4, in the second form, R2, Rtn4 curiously appears as two parallel lines at a conserved separation of ~105 nm over long ranges. The two tubule forms together account for ~90% of the total tubule lengths, with either one being dominant in different cell types. The R1-R2 dichotomy and the final tubule geometry are both co-regulated by Rtn4 and the ER sheet-maintaining protein Climp63, which respectively define the edge curvature and lumen height of the R2 tubules to generate a ribbon-like structure of well-defined width. The R1 and R2 tubules undergo active remodeling in the cell as they differently accommodate proteins, with the former effectively excluding ER-luminal proteins and ER-membrane proteins with large intraluminal domains. We thus unveil a dynamic ER-tubule structural dichotomy with intriguing functional implications.


The Analyst ◽  
2021 ◽  
Author(s):  
Yucheng Sun ◽  
Seungah Lee ◽  
Seong Ho Kang

The contact distance between mitochondria (Mito) and endoplasmic reticulum (ER) has received considerable attention owing to their crucial function in maintaining lipid and calcium homeostasis. Herein, cubic spline algorithm-based depth-dependent...


2020 ◽  
Author(s):  
Rory K. M. Long ◽  
Kathleen P. Moriarty ◽  
Ben Cardoen ◽  
Guang Gao ◽  
A. Wayne Vogl ◽  
...  

AbstractThe endoplasmic reticulum (ER) is a complex subcellular organelle composed of diverse structures such as tubules, sheets and tubular matrices. Flaviviruses such as Zika virus (ZIKV) induce reorganization of endoplasmic reticulum (ER) membranes to facilitate viral replication. Here, using 3D super resolution microscopy, ZIKV infection is shown to induce the formation of dense tubular matrices associated with viral replication in the central ER. Viral non-structural proteins NS4B and NS2B associate with replication complexes within the ZIKV-induced tubular matrix and exhibit distinct ER distributions outside this central ER region. Deep neural networks trained to identify ZIKV-infected versus mock-infected cells successfully identified ZIKV-induced central ER tubular matrices as a determinant of viral infection. Super resolution microscopy and deep learning are therefore able to identify and localize morphological features of the ER and may be of use to screen for inhibitors of infection by ER-reorganizing viruses.


2018 ◽  
Vol 54 (30) ◽  
pp. 3735-3738 ◽  
Author(s):  
Anila Hoskere A. ◽  
Sreejesh Sreedharan ◽  
Firoj Ali ◽  
Carl G. Smythe ◽  
Jim A. Thomas ◽  
...  

A new physiologically benign and cell membrane permeable BODIPY based molecular probe, MB-Sn, specifically senses intracellular hydrogen polysulfides (H2Sn, n > 1) localized in the endoplasmic reticulum.


2019 ◽  
Author(s):  
Nicola Galvanetto ◽  
Sourav Maity ◽  
Nina Ilieva ◽  
Zhongjie Ye ◽  
Alessandro Laio ◽  
...  

AbstractIs the mechanical unfolding of proteins just a technological feat applicable only to synthetic preparations or can it provide useful information even for real biological samples? Here, we describe a pipeline for analyzing native membranes based on high throughput single-molecule force spectroscopy. The protocol includes a technique for the isolation of the plasma membrane of single cells. Afterwards, one harvests hundreds of thousands SMSF traces from the sample. Finally, one characterizes and identifies the embedded membrane proteins. This latter step is the cornerstone of our approach and involves combining, within a Bayesian framework, the information of the shape of the SMFS Force-distance which are observed more frequently, with the information from Mass Spectrometry and from proteomic databases (Uniprot, PDB). We applied this method to four cell types where we classified the unfolding of 5-10% of their total content of membrane proteins. The ability to mechanically probe membrane proteins directly in their native membrane enables the phenotyping of different cell types with almost single-cell level of resolution.


2020 ◽  
Vol 21 (8) ◽  
pp. 2803 ◽  
Author(s):  
Marie-Lena I.E. Harwardt ◽  
Mark S. Schröder ◽  
Yunqing Li ◽  
Sebastian Malkusch ◽  
Petra Freund ◽  
...  

Receptor tyrosine kinases (RTKs) orchestrate cell motility and differentiation. Deregulated RTKs may promote cancer and are prime targets for specific inhibitors. Increasing evidence indicates that resistance to inhibitor treatment involves receptor cross-interactions circumventing inhibition of one RTK by activating alternative signaling pathways. Here, we used single-molecule super-resolution microscopy to simultaneously visualize single MET and epidermal growth factor receptor (EGFR) clusters in two cancer cell lines, HeLa and BT-20, in fixed and living cells. We found heteromeric receptor clusters of EGFR and MET in both cell types, promoted by ligand activation. Single-protein tracking experiments in living cells revealed that both MET and EGFR respond to their cognate as well as non-cognate ligands by slower diffusion. In summary, for the first time, we present static as well as dynamic evidence of the presence of heteromeric clusters of MET and EGFR on the cell membrane that correlates with the relative surface expression levels of the two receptors.


2015 ◽  
Vol 112 (17) ◽  
pp. E2174-E2181 ◽  
Author(s):  
Riccardo Filadi ◽  
Elisa Greotti ◽  
Gabriele Turacchio ◽  
Alberto Luini ◽  
Tullio Pozzan ◽  
...  

The organization and mutual interactions between endoplasmic reticulum (ER) and mitochondria modulate key aspects of cell pathophysiology. Several proteins have been suggested to be involved in keeping ER and mitochondria at a correct distance. Among them, in mammalian cells, mitofusin 2 (Mfn2), located on both the outer mitochondrial membrane and the ER surface, has been proposed to be a physical tether between the two organelles, forming homotypic interactions and heterocomplexes with its homolog Mfn1. Recently, this widely accepted model has been challenged using quantitative EM analysis. Using a multiplicity of morphological, biochemical, functional, and genetic approaches, we demonstrate that Mfn2 ablation increases the structural and functional ER–mitochondria coupling. In particular, we show that in different cell types Mfn2 ablation or silencing increases the close contacts between the two organelles and strengthens the efficacy of inositol trisphosphate (IP3)-induced Ca2+ transfer from the ER to mitochondria, sensitizing cells to a mitochondrial Ca2+ overload-dependent death. We also show that the previously reported discrepancy between electron and fluorescence microscopy data on ER–mitochondria proximity in Mfn2-ablated cells is only apparent. By using a different type of morphological analysis of fluorescent images that takes into account (and corrects for) the gross modifications in mitochondrial shape resulting from Mfn2 ablation, we demonstrate that an increased proximity between the organelles is also observed by confocal microscopy when Mfn2 levels are reduced. Based on these results, we propose a new model for ER–mitochondria juxtaposition in which Mfn2 works as a tethering antagonist preventing an excessive, potentially toxic, proximity between the two organelles.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rory K. M. Long ◽  
Kathleen P. Moriarty ◽  
Ben Cardoen ◽  
Guang Gao ◽  
A. Wayne Vogl ◽  
...  

AbstractThe endoplasmic reticulum (ER) is a complex subcellular organelle composed of diverse structures such as tubules, sheets and tubular matrices. Flaviviruses such as Zika virus (ZIKV) induce reorganization of ER membranes to facilitate viral replication. Here, using 3D super resolution microscopy, ZIKV infection is shown to induce the formation of dense tubular matrices associated with viral replication in the central ER. Viral non-structural proteins NS4B and NS2B associate with replication complexes within the ZIKV-induced tubular matrix and exhibit distinct ER distributions outside this central ER region. Deep neural networks trained to distinguish ZIKV-infected versus mock-infected cells successfully identified ZIKV-induced central ER tubular matrices as a determinant of viral infection. Super resolution microscopy and deep learning are therefore able to identify and localize morphological features of the ER and allow for better understanding of how ER morphology changes due to viral infection.


1955 ◽  
Vol 1 (6) ◽  
pp. 567-582 ◽  
Author(s):  
George E. Palade

A survey of a large number of different cell types has indicated the presence of a network of membrane-bound cavities (the endoplasmic reticulum) in the cytoplasm of all cell types examined, with the exception of the mature erythrocyte. In its simplest form, encountered in seminal epithelia and in leucocytes, the reticulum consists mainly of interconnected strings of vesicles and appears to be randomly disposed in three dimensions. Local differentiations occur within the endoplasmic reticulum of all the cell types studied. The membrane limiting the cavities of the endoplasmic reticulum appears to be continuous with the cell membrane and the nuclear membranes.


Sign in / Sign up

Export Citation Format

Share Document