ligand activation
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 12)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jason C McCoy ◽  
Erich J Goebel ◽  
Thomas B Thompson

Growth differentiation factor 8 (GDF8), a.k.a. myostatin, is a member of the larger TGFβ superfamily of signaling ligands. GDF8 has been well characterized as a negative regulator of muscle mass. After synthesis, GDF8 is held latent by a noncovalent complex between the N-terminal prodomain and the signaling ligand. Activation of latent GDF8 requires proteolytic cleavage of the prodomain at residue D99 by a member of the tolloid family of metalloproteases. While tolloid proteases cleave multiple substrates, they lack a conserved consensus sequence. Here we investigate the tolloid cleavage site of the GDF8 prodomain to determine what residues contribute to tolloid recognition and subsequent proteolysis. Using sequential alanine mutations, we identified several residues adjacent to the scissile bond, including Y94, that when mutated, abolish tolloid-mediated activation of latent GDF8. Using the astacin domain of Tll1 (Tolloid Like 1) we determined that prodomain mutants were more resistant to proteolysis. Purified latent complexes harboring the prodomain mutations, D92A and Y94A, impeded activation by tolloid but could be fully activated under acidic conditions. Finally, we show that co-expression of GDF8 WT with prodomain mutants that were tolloid resistant, suppressed GDF8 activity. Taken together our data demonstrate that residues towards the N-terminus of the scissile bond are important for tolloid-mediated activation of GDF8 and that tolloid-resistant version of the GDF8 prodomain can function dominant negative to WT GDF8.


2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Tara Akhshi ◽  
William S. Trimble

Primary cilia function as critical signaling hubs whose absence leads to severe disorders collectively known as ciliopathies; our knowledge of ciliogenesis remains limited. We show that Smo induces ciliogenesis through two distinct yet essential noncanonical Hh pathways in several cell types, including neurons. Surprisingly, ligand activation of Smo induces autophagy via an LKB1-AMPK axis to remove the satellite pool of OFD1. This is required, but not sufficient, for ciliogenesis. Additionally, Smo activates the Gαi-LGN-NuMA-dynein axis, causing accumulation of a portion of OFD1 at centrioles in early ciliogenesis. Both pathways are critical for redistribution of BBS4 from satellites to centrioles, which is also mediated by OFD1 centriolar translocation. Notably, different Smo agonists, which activate Smo distinctly, activate one or the other of these pathways; only in combination they recapitulate the activity of Hh ligand. These studies provide new insight into physiological stimuli (Hh) that activate autophagy and promote ciliogenesis and introduce a novel role for the Gαi-LGN-NuMA-dynein complex in this process.


2020 ◽  
Vol 21 (19) ◽  
pp. 7088
Author(s):  
Mikhail V. Voronin ◽  
Yulia V. Vakhitova ◽  
Sergei B. Seredenin

This review analyzes the current scientific literature on the role of the Sigma1R chaperone in the pathogenesis of depressive disorders and pharmacodynamics of antidepressants. As a result of ligand activation, Sigma1R is capable of intracellular translocation from the endoplasmic reticulum (ER) into the region of nuclear and cellular membranes, where it interacts with resident proteins. This unique property of Sigma1R provides regulation of various receptors, ion channels, enzymes, and transcriptional factors. The current review demonstrates the contribution of the Sigma1R chaperone to the regulation of molecular mechanisms involved in the antidepressant effect.


Cell Research ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Xiaoxiao Li ◽  
Qiansen Zhang ◽  
Peipei Guo ◽  
Jie Fu ◽  
Lianghe Mei ◽  
...  

2020 ◽  
Vol 27 (7) ◽  
pp. 625-634 ◽  
Author(s):  
Xiangdong Zheng ◽  
Ziao Fu ◽  
Deyuan Su ◽  
Yuebin Zhang ◽  
Minghui Li ◽  
...  

2020 ◽  
Vol 27 (6) ◽  
pp. R193-R210
Author(s):  
Varadha Balaji Venkadakrishnan ◽  
Salma Ben-Salem ◽  
Hannelore V Heemers

Prostate cancer (CaP) is the second leading cause of cancer-related deaths in Western men. Because androgens drive CaP by activating the androgen receptor (AR), blocking AR’s ligand activation, known as androgen deprivation therapy (ADT), is the default treatment for metastatic CaP. Despite an initial remission, CaP eventually develops resistance to ADT and progresses to castration-recurrent CaP (CRPC). CRPC continues to rely on aberrantly activated AR that is no longer inhibited effectively by available therapeutics. Interference with signaling pathways downstream of activated AR that mediate aggressive CRPC behavior may lead to alternative CaP treatments. Developing such therapeutic strategies requires a thorough mechanistic understanding of the most clinically relevant and druggable AR-dependent signaling events. Recent proteomics analyses of CRPC clinical specimens indicate a shift in the phosphoproteome during CaP progression. Kinases and phosphatases represent druggable entities, for which clinically tested inhibitors are available, some of which are incorporated already in treatment plans for other human malignancies. Here, we reviewed the AR-associated transcriptome and translational regulon, and AR interactome involved in CaP phosphorylation events. Novel and for the most part mutually exclusive AR-dependent transcriptional and post-transcriptional control over kinase and phosphatase expression was found, with yet other phospho-regulators interacting with AR. The multiple mechanisms by which AR can shape and fine-tune the CaP phosphoproteome were reflected in diverse aspects of CaP biology such as cell cycle progression and cell migration. Furthermore, we examined the potential, limitations and challenges of interfering with AR-mediated phosphorylation events as alternative strategy to block AR function during CaP progression.


2020 ◽  
Vol 124 (23) ◽  
pp. 4764-4776 ◽  
Author(s):  
Joshua H. Marks ◽  
Timothy B. Ward ◽  
Antonio D. Brathwaite ◽  
Michael A. Duncan

2020 ◽  
Vol 21 (8) ◽  
pp. 2803 ◽  
Author(s):  
Marie-Lena I.E. Harwardt ◽  
Mark S. Schröder ◽  
Yunqing Li ◽  
Sebastian Malkusch ◽  
Petra Freund ◽  
...  

Receptor tyrosine kinases (RTKs) orchestrate cell motility and differentiation. Deregulated RTKs may promote cancer and are prime targets for specific inhibitors. Increasing evidence indicates that resistance to inhibitor treatment involves receptor cross-interactions circumventing inhibition of one RTK by activating alternative signaling pathways. Here, we used single-molecule super-resolution microscopy to simultaneously visualize single MET and epidermal growth factor receptor (EGFR) clusters in two cancer cell lines, HeLa and BT-20, in fixed and living cells. We found heteromeric receptor clusters of EGFR and MET in both cell types, promoted by ligand activation. Single-protein tracking experiments in living cells revealed that both MET and EGFR respond to their cognate as well as non-cognate ligands by slower diffusion. In summary, for the first time, we present static as well as dynamic evidence of the presence of heteromeric clusters of MET and EGFR on the cell membrane that correlates with the relative surface expression levels of the two receptors.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1859
Author(s):  
Anna A. Mukhacheva ◽  
Artem L. Gushchin ◽  
Vadim V. Yanshole ◽  
Pavel A. Abramov ◽  
Maksim N. Sokolov

Irradiation of the Keggin-type [PW11O39{Ru(NO)}]4− (Ru-NO) polyoxometalate in CH3CN results in rapid NO ligand elimination with the formation of [PW11O39{RuIII(CH3CN)}]4− (Ru-CH3CN). This complex offers an easy entry into the Ru-based chemistry of the {PW11Ru} complex. Attempts to substitute N3− for CH3CN in the presence of an NaN3 excess lead a variety of products: (i) [PW11O39{RuIII(N3)}]4− (Ru-N3); (ii) [PW11O39{RuIII(N4HC-CH3)}]4− (Ru-Tz) as a click-reaction product; and (iii) [PW11O39{RuII(N2)}]5− (Ru-N2). UV-VIS, CV, and HR-ESI-MS techniques were used for the reaction monitoring and characterization of the products.


2020 ◽  
Author(s):  
Jessica Kain ◽  
Xiaolong Wei ◽  
Andrew J. Price ◽  
Claire Woods ◽  
Irina M. Bochkis

SummaryType II nuclear hormone receptors, such as FXR, LXR, and PPAR, which function in glucose and lipid metabolism and serve as drug targets for metabolic diseases, are permanently positioned in the nucleus regardless of the ligand status. Ligand activation of these receptors is thought to occur by co-repressor/co-activator exchange, followed by initiation of transcription. However, recent genome-wide location analysis showed that LXRα and PPARα binding in the liver is largely ligand-dependent. We hypothesized that pioneer factor Foxa2 evicts nucleosomes to enable ligand-dependent receptor binding. We show that chromatin accessibility, LXRα occupancy, and LXRα-dependent gene expression upon ligand activation require Foxa2. Unexpectedly, Foxa2 occupancy is drastically increased when LXRα is bound by an agonist. Our results suggest that Foxa2 and LXRα bind DNA as an interdependent complex during ligand activation. Our model requiring pioneering activity for ligand activation challenges the existing co-factor exchange mechanism and expands current understanding of nuclear receptor biology, suggesting that chromatin accessibility needs to be considered in design of drugs targeting nuclear receptors.


Sign in / Sign up

Export Citation Format

Share Document