scholarly journals Learning a new class of multisensory associations: High-density electrophysiological mapping of the temporal course of audio-visual object processing.

2021 ◽  
Author(s):  
Tiziana Vercillo ◽  
Edward G. Freedman ◽  
Joshua B. Ewen ◽  
Sophie Molholm ◽  
John J. Foxe

Multisensory objects that are frequently encountered in the natural environment lead to strong associations across a distributed sensory cortical network, with the end result experience of a unitary percept. Remarkably little is known, however, about the cortical processes sub-serving multisensory object formation and recognition. To advance our understanding in this important domain, the present study investigated the brain processes involved in learning and identification of novel visual-auditory objects. Specifically, we introduce and test a rudimentary three-stage model of multisensory object-formation and processing. Thirty adults were remotely trained for a week to recognize a novel class of multisensory objects (3D shapes paired to complex sounds), and high-density event related potentials (ERPs) were recorded to the corresponding unisensory (shapes or sounds only) and multisensory (shapes and sounds) stimuli, before and after intensive training. We identified three major stages of multisensory processing: 1) an early, multisensory, automatic effect (<100 ms) in occipital areas, related to the detection of simultaneous audiovisual signals and not related to multisensory learning 2) an intermediate object-processing stage (100-200 ms) in occipital and parietal areas, sensitive to the learned multi-sensory associations and 3) a late multisensory processing stage (>250 ms) that appears to be involved in both object recognition and possibly memory consolidation. Results from this study provide support for multiple stages of multisensory object learning and recognition that are subserved by an extended network of cortical areas.

2002 ◽  
Vol 13 (3) ◽  
pp. 250-257 ◽  
Author(s):  
B. Rossion ◽  
I. Gauthier ◽  
V. Goffaux ◽  
M.J. Tarr ◽  
M. Crommelinck

Scalp event-related potentials (ERPs) in humans indicate that face and object processing differ approximately 170 ms following stimulus presentation, at the point of the N170 occipitotemporal component. The N170 is delayed and enhanced to inverted faces but not to inverted objects. We tested whether this inversion effect reflects early mechanisms exclusive to faces or whether it generalizes to other stimuli as a function of visual expertise. ERPs to upright and inverted faces and novel objects (Greebles) were recorded in 10 participants before and after 2 weeks of expertise training with Greebles. The N170 component was observed for both faces and Greebles. The results are consistent with previous reports in that the N170 was delayed and enhanced for inverted faces at recording sites in both hemispheres. For Greebles, the same effect of inversion was observed only for experts, primarily in the left hemisphere. These results suggest that the mechanisms underlying the electrophysiological face-inversion effect extend to visually homogeneous nonface object categories, at least in the left hemisphere, but only when such mechanisms are recruited by expertise.


2015 ◽  
Vol 114 (5) ◽  
pp. 2672-2681 ◽  
Author(s):  
Emanuel N. van den Broeke ◽  
André Mouraux ◽  
Antonia H. Groneberg ◽  
Doreen B. Pfau ◽  
Rolf-Detlef Treede ◽  
...  

Secondary hyperalgesia is believed to be a key feature of “central sensitization” and is characterized by enhanced pain to mechanical nociceptive stimuli. The aim of the present study was to characterize, using EEG, the effects of pinprick stimulation intensity on the magnitude of pinprick-elicited brain potentials [event-related potentials (ERPs)] before and after secondary hyperalgesia induced by intradermal capsaicin in humans. Pinprick-elicited ERPs and pinprick-evoked pain ratings were recorded in 19 healthy volunteers, with mechanical pinprick stimuli of varying intensities (0.25-mm probe applied with a force extending between 16 and 512 mN). The recordings were performed before (T0) and 30 min after (T1) intradermal capsaicin injection. The contralateral noninjected arm served as control. ERPs elicited by stimulation of untreated skin were characterized by 1) an early-latency negative-positive complex peaking between 120 and 250 ms after stimulus onset (N120-P240) and maximal at the vertex and 2) a long-lasting positive wave peaking 400–600 ms after stimulus onset and maximal more posterior (P500), which was correlated to perceived pinprick pain. After capsaicin injection, pinprick stimuli were perceived as more intense in the area of secondary hyperalgesia and this effect was stronger for lower compared with higher stimulus intensities. In addition, there was an enhancement of the P500 elicited by stimuli of intermediate intensity, which was significant for 64 mN. The other components of the ERPs were unaffected by capsaicin. Our results suggest that the increase in P500 magnitude after capsaicin is mediated by facilitated mechanical nociceptive pathways.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
T. Sumiyoshi ◽  
Y. Higuchi ◽  
T. Itoh ◽  
M. Matsui ◽  
H. Arai ◽  
...  

The purpose of this study was to determine if perospirone, a second generation antipsychotic drug and partial agonist at serotonin-5-HT1A receptors, enhances electrophysiological activity, such as event-related potentials (ERPs), in frontal brain regions, as well as cognitive function in subjects with schizophrenia. P300 current source images were obtained by means of standardized low resolution brain electromagnetic tomography (sLORETA) before and after treatment with perospirone for 6 months. Perospirone significantly increased P300 current source density in the left superior frontal gyrus, and improved positive symptoms and performance on the script tasks, a measure of verbal social cognition. Perospirone also tended to enhance verbal learning memory in patients with schizophrenia. There was a significant correlation between the changes in P300 amplitudes on the left frontal lead and those in social cognition. These results suggest the changes in three-dimensional distribution of cortical activity, as demonstrated by sLORETA, may mediate some of the actions of antipsychotic drugs. the distinct cognition-enhancing profile of perospirone may be related to its actions on 5-HT1A receptors.


2019 ◽  
Vol 11 (1) ◽  
pp. 80-115
Author(s):  
Eva Koderman

Abstract Anxiety is characterized by a sustained state of heightened vigilance due to uncertain danger, producing increased attention to a perceived threat in one's environment. To further examine this exploited the temporal resolution afforded by event-related potentials to investigate the impact of predictability of threat on early perceptual activity. We recruited 28 participants and utilized a within-subject design to examine hypervigilance in anticipation of shock, unpleasant picture and unpleasant sound during a task with unpredictable, predictable and no threat. We investigated if habituation to stimuli was present by asking the participants to rate unpleasantness and intensity of the stimuli before and after the experiment. We observed hypervigilance in the unpredictable threat of shock. Habituation was observed for the visual stimuli. The present study suggests that unpredictability enhances attentional engagement with neutral somatosensory stimuli when the threat is of the same modality, meaning we observed the presence of hypervigilance which is a characteristic of anxiety.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Eunjin Hwang ◽  
Hio-Been Han ◽  
Jung Young Kim ◽  
Jee Hyun Choi

Abstract We present high-density EEG datasets of auditory steady-state responses (ASSRs) recorded from the cortex of freely moving mice with or without optogenetic stimulation of basal forebrain parvalbumin (BF-PV) neurons, known as a subcortical hub circuit for the global workspace. The dataset of ASSRs without BF-PV stimulation (dataset 1) contains raw 36-channel EEG epochs of ASSRs elicited by 10, 20, 30, 40, and 50 Hz click trains and time stamps of stimulations. The dataset of ASSRs with BF-PV stimulation (dataset 2) contains raw 36-channel EEG epochs of 40-Hz ASSRs during BF-PV stimulation with latencies of 0, 6.25, 12.5, and 18.75 ms and time stamps of stimulations. We provide the datasets and step-by-step tutorial analysis scripts written in Python, allowing for descriptions of the event-related potentials, spectrograms, and the topography of power. We complement this experimental dataset with simulation results using a time-dependent perturbation on coupled oscillators. This publicly available dataset will be beneficial to the experimental and computational neuroscientists.


2020 ◽  
Vol 8 (5) ◽  
pp. 872-889 ◽  
Author(s):  
Paige Ethridge ◽  
Nida Ali ◽  
Sarah E. Racine ◽  
Jens C. Pruessner ◽  
Anna Weinberg

Both abnormal stress and reward responsivity are consistently linked to multiple forms of psychopathology; however, the nature of the associations between stress and reward sensitivity remains poorly understood. In the present study, we examined associations between the hypothalamic-pituitary-adrenal-axis stress response and event-related potentials sensitive to the receipt of reward-related feedback in a pre–post experimental paradigm. Neural responses were recorded while male participants completed a simple monetary-reward guessing task before and after the Montreal Imaging Stress Task. Results demonstrated that acute psychosocial stress significantly reduced the magnitude of neural responses to feedback in the reward-sensitive delta-frequency band but not the loss-sensitive theta-frequency band. In addition, a larger delta-frequency response to rewards at baseline predicted reduced overall cortisol response in the stress condition. These findings suggest, therefore, that neural reward circuitry may be associated with both risk for and resilience to stress-related psychopathology.


Sign in / Sign up

Export Citation Format

Share Document