scholarly journals Comparing human and model-based forecasts of COVID-19 in Germany and Poland

Author(s):  
Nikos I. Bosse ◽  
Sam Abbott ◽  
Johannes Bracher ◽  
Habakuk Hain ◽  
Billy J. Quilty ◽  
...  

1AbstractForecasts based on epidemiological modelling have played an important role in shaping public policy throughout the COVID-19 pandemic. This modelling combines knowledge about infectious disease dynamics with the subjective opinion of the researcher who develops and refines the model and often also adjusts model outputs. Developing a forecast model is difficult, resource- and time-consuming. It is therefore worth asking what modelling is able to add beyond the subjective opinion of the researcher alone. To investigate this, we analysed different real-time forecasts of cases of and deaths from COVID-19 in Germany and Poland over a 1-4 week horizon submitted to the German and Polish Forecast Hub. We compared crowd forecasts elicited from researchers and volunteers, against a) forecasts from two semi-mechanistic models based on common epidemiological assumptions and b) the ensemble of all other models submitted to the Forecast Hub. We found crowd forecasts, despite being overconfident, to outperform all other methods across all forecast horizons when forecasting cases (weighted interval score relative to the Hub ensemble 2 weeks ahead: 0.89). Forecasts based on computational models performed comparably better when predicting deaths (rel. WIS 1.26), suggesting that epidemiological modelling and human judgement can complement each other in important ways.

Epidemics ◽  
2018 ◽  
Vol 22 ◽  
pp. 56-61 ◽  
Author(s):  
Sebastian Funk ◽  
Anton Camacho ◽  
Adam J. Kucharski ◽  
Rosalind M. Eggo ◽  
W. John Edmunds

2019 ◽  
Vol 7 (8) ◽  
pp. 277
Author(s):  
Yong-jun Chen ◽  
Qing Liu ◽  
Cheng-peng Wan

Accidents occur frequently in traffic-intensive waters, which restrict the safe and rapid development of the shipping industry. Due to the suddenness, randomness, and uncertainty of accidents in traffic-intensive waters, the probability of the risk factors causing traffic accidents is usually high. Thus, properly analyzing those key risk factors is of great significance to improve the safety of shipping. Based on the analysis of influencing factors of ship navigational risks in traffic-intensive waters, this paper proposes a cloud model to excavate the factors affecting navigational risk, which could accurately screen out the key risk factors. Furthermore, the risk causal model of ship navigation in traffic-intensive waters is constructed by using the infectious disease dynamics method in order to model the key risk causal transmission process. Moreover, an empirical study of the Yangtze River estuary is conducted to illustrate the feasibility of the proposed models. The research results show that the cloud model is useful in screening the key risk factors, and the constructed causal model of ship navigational risks in traffic-intensive waters is able to provide accurate analysis of the transmission process of key risk factors, which can be used to reduce the navigational risk of ships in traffic-intensive waters. This research provides both theoretical basis and practical reference for regulators in the risk management and control of ships in traffic-intensive waters.


2020 ◽  
Vol 14 (1) ◽  
pp. 57-89 ◽  
Author(s):  
Sheryl L. Chang ◽  
Mahendra Piraveenan ◽  
Philippa Pattison ◽  
Mikhail Prokopenko

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e58802 ◽  
Author(s):  
Gonzalo M. Vazquez-Prokopec ◽  
Donal Bisanzio ◽  
Steven T. Stoddard ◽  
Valerie Paz-Soldan ◽  
Amy C. Morrison ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-2 ◽  
Author(s):  
Lauren Ancel Meyers ◽  
Ben Kerr ◽  
Katia Koelle

Sign in / Sign up

Export Citation Format

Share Document