scholarly journals Glutamine deficiency in solid tumors confers resistance to ribosomal RNA synthesis inhibitors

2021 ◽  
Author(s):  
Melvin Pan ◽  
Christiane Zorbas ◽  
Maki Sugaya ◽  
Kensuke Ishiguro ◽  
Miki Kato ◽  
...  

SummaryRibosome biogenesis involves the processing of precursor ribosomal RNAs (pre-rRNAs) and sequential assembly with ribosomal proteins. Here we report that nutrient deprivation severely impairs pre-rRNA processing and leads to the accumulation of unprocessed rRNAs. Upon nutrient restoration, the accumulated pre-rRNAs are processed into mature rRNAs that are utilized for ribosome biogenesis. Failure to accumulate pre-rRNAs under nutrient deprivation leads to perturbed ribosome assembly during nutrient restoration and subsequent apoptosis via uL5/uL18-mediated activation of p53. Restoration of glutamine alone activates p53 by triggering uL5/uL18 translation. Induction of uL5/uL18 protein synthesis by glutamine was dependent on the translation factor eukaryotic elongation factor 2 (eEF2), which was in turn dependent on Raf/MEK/ERK signalling. Depriving cells of glutamine prevents the activation of p53 by rRNA synthesis inhibitors. Our data reveals a mechanism that cancer cells can exploit to suppress p53-mediated apoptosis during fluctuations in environmental nutrient availability.

2016 ◽  
Vol 48 (8) ◽  
pp. 616-625
Author(s):  
Robert A. McKnight ◽  
Christian C. Yost ◽  
Erin K. Zinkhan ◽  
Qi Fu ◽  
Christopher W. Callaway ◽  
...  

Nutrient deprivation suppresses protein synthesis by blocking peptide elongation. Transcriptional upregulation and activation of eukaryotic elongation factor 2 kinase (eEF2K) blocks peptide elongation by phosphorylating eukaryotic elongation factor 2. Previous studies examining placentas from intrauterine growth restricted (IUGR) newborn infants show decreased eEF2K expression and activity despite chronic nutrient deprivation. However, the effect of IUGR on hepatic eEF2K expression in the fetus is unknown. We, therefore, examined the transcriptional regulation of hepatic eEF2K gene expression in a Sprague-Dawley rat model of IUGR. We found decreased hepatic eEF2K mRNA and protein levels in IUGR offspring at birth compared with control, consistent with previous placental observations. Furthermore, the CpG island within the eEF2K promoter demonstrated increased methylation at a critical USF 1/2 transcription factor binding site. In vitro methylation of this binding site caused near complete loss of eEF2K promoter activity, designating this promoter as methylation sensitive. The eEF2K promotor in IUGR offspring also lost the protective histone covalent modifications associated with unmethylated CGIs. In addition, the +1 nucleosome was displaced 3′ and RNA polymerase loading was reduced at the IUGR eEF2K promoter. Our findings provide evidence to explain why IUGR-induced chronic nutrient deprivation does not result in the upregulation of eEF2K gene transcription.


2019 ◽  
Vol 74 (1) ◽  
pp. 88-100.e9 ◽  
Author(s):  
Leonie Mönkemeyer ◽  
Courtney L. Klaips ◽  
David Balchin ◽  
Roman Körner ◽  
F. Ulrich Hartl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document