scholarly journals PEDOT:PSS-Modified Cotton Conductive Thread for Mass Manufacturing of Textile-Based Electrical Wearable Sensors by Computerized Embroidery

2021 ◽  
Author(s):  
Fahad Alshabouna ◽  
Hong Seok Lee ◽  
Giandrin Barandun ◽  
Ellasia Tan ◽  
Yasin Çotur ◽  
...  

AbstractThe textile industry has advanced processes that allow computerized manufacturing of garments at large volumes with precise visual patterns. The industry, however, is not able to mass fabricate clothes with seamlessly integrated wearable sensors, using its precise methods of fabrication (such as computerized embroidery). This is due to the lack of conductive threads compatible with standard manufacturing methods used in industry. In this work, we report a low-cost poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-modified cotton conductive thread (PECOTEX) that is compatible with computerized embroidery. The PECOTEX was produced using a crosslinking reaction between PEDOT:PSS and cotton thread using divinyl sulfone as the crosslinker. We extensively characterized and optimized our formulations to create a mechanically robust conductive thread that can be produced in large quantities in a roll-to-roll fashion. Using PECOTEX and a domestic computerized embroidery machine, we produced a series of wearable electrical sensors including a facemask for monitoring breathing, a t-shirt for monitoring heart activity and textile-based gas sensors for monitoring ammonia as technology demonstrators. PECOTEX has the potential to enable mass manufacturing of new classes of low-cost wearable sensors integrated into everyday clothes.

ACS Omega ◽  
2021 ◽  
Author(s):  
Yulong Chen ◽  
Mingjie Li ◽  
Wenjun Yan ◽  
Xin Zhuang ◽  
Kar Wei Ng ◽  
...  

2021 ◽  
Vol 98 ◽  
pp. 102981
Author(s):  
Naser Hossein Motlagh ◽  
Martha A. Zaidan ◽  
Pak L. Fung ◽  
Eemil Lagerspetz ◽  
Kasimir Aula ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 62592-62605 ◽  
Author(s):  
Bin Tian ◽  
Kun Mean Hou ◽  
Xunxing Diao ◽  
Hongling Shi ◽  
Haiying Zhou ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Tero Jalkanen ◽  
Anni Määttänen ◽  
Ermei Mäkilä ◽  
Jaani Tuura ◽  
Martti Kaasalainen ◽  
...  

A roll-to-roll compatible fabrication process of porous silicon (pSi) based sensing elements for a real-time humidity monitoring is described. The sensing elements, consisting of printed interdigitated silver electrodes and a spray-coated pSi layer, were fabricated on a coated paper substrate by a two-step process. Capacitive and resistive responses of the sensing elements were examined under different concentrations of humidity. More than a three orders of magnitude reproducible decrease in resistance was measured when the relative humidity (RH) was increased from 0% to 90%. A relatively fast recovery without the need of any refreshing methods was observed with a change in RH. Humidity background signal and hysteresis arising from the paper substrate were dependent on the thickness of sensing pSi layer. Hysteresis in most optimal sensing element setup (a thick pSi layer) was still noticeable but not detrimental for the sensing. In addition to electrical characterization of sensing elements, thermal degradation and moisture adsorption properties of the paper substrate were examined in connection to the fabrication process of the silver electrodes and the moisture sensitivity of the paper. The results pave the way towards the development of low-cost humidity sensors which could be utilized, for example, in smart packaging applications or in smart cities to monitor the environment.


2012 ◽  
Vol 14 (6) ◽  
pp. 1565 ◽  
Author(s):  
Maria Chiesa ◽  
Federica Rigoni ◽  
Maria Paderno ◽  
Patrizia Borghetti ◽  
Giovanna Gagliotti ◽  
...  

2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


Author(s):  
David Hasenfratz ◽  
Olga Saukh ◽  
Lothar Thiele
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document