An Investigation onto Polydimethylsiloxane (PDMS) Printing Plate of Multiple Functional Solid Line by Flexographic

2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.

2004 ◽  
Vol 846 ◽  
Author(s):  
Hee Hyun Lee ◽  
Etienne Menard ◽  
Nancy G. Tassi ◽  
John A. Rogers ◽  
Graciela B. Blanchet

ABSTRACTLow cost fabrication is key to the successful introduction of organic electronics and roll to roll manufacturing processes. We propose here that extending flexography into the micron size resolution regime may provide an economical commercialization path for plastic devices. Flexography is a high-speed technique commonly used for printing onto very large area flexible substrates.[1] Although low resolution and poor registration are characteristics of today's flexographic process, it has many similarities with soft lithographic techniques. This work shows that large, (12”×12”) high-resolution printing plates appropriate for use on small tag and label flexographic presses can be prepared using simple and inexpensive flexographic compatible processes. We illustrate the use of these plates for three representative soft lithographic processes: microcontact printing, replica molding, and phase shift lithography.


2004 ◽  
Vol 814 ◽  
Author(s):  
Ornella Sanna ◽  
Mario Cossu ◽  
Tomas Pilia ◽  
Annalisa Bonfiglio

ABSTRACTA simple idea is proposed for the realization of organic photovoltaic devices on flexible substrates. According to this, a poly(ethylene terephtalate) layer (Mylar), transparent, a few micrometers thick and completely flexible, works as mechanical support. It is an insulating material, which has good mechanical and dielectric properties and, most important, it is completely transparent to ultraviolet light. For this reason it could be suitable for being used as transparent supporting layer for large area photovoltaic devices. Furthermore, its mechanical properties allow to employ it in a roll-to-roll lamination procedure that could give rise to low cost extended films carrying solar cells on the surface.


Author(s):  
Mahesh Soni ◽  
Dhayalan Shakthivel ◽  
Adamos Christou ◽  
Ayoub Zumeit ◽  
Nivasan Yogeswaran ◽  
...  

MRS Bulletin ◽  
2006 ◽  
Vol 31 (6) ◽  
pp. 471-475 ◽  
Author(s):  
Marc Chason ◽  
Daniel R. Gamota ◽  
Paul W. Brazis ◽  
Krishna Kalyanasundaram ◽  
Jie Zhang ◽  
...  

AbstractDevelopments originally targeted toward economical manufacturing of telecommunications products have planted the seeds for new opportunities such as low-cost, large-area electronics based on printing technologies. Organic-based materials systems for printed wiring board (PWB) construction have opened up unique opportunities for materials research in the fabrication of modular electronic systems.The realization of successful consumer products has been driven by materials developments that expand PWB functionality through embedded passive components, novel MEMS structures (e.g., meso-MEMS, in which the PWB-based structures are at the milliscale instead of the microscale), and microfluidics within the PWB. Furthermore, materials research is opening up a new world of printed electronics technology, where active devices are being realized through the convergence of printing technologies and microelectronics.


MRS Advances ◽  
2019 ◽  
Vol 4 (24) ◽  
pp. 1367-1375 ◽  
Author(s):  
Dongxiang Wang ◽  
Jacqueline Hauptmann ◽  
Christian May

ABSTRACTLarge area lighting OLEDs manufactured in a Roll-to-Roll (R2R) fashion enable the well-longed production capability with considerably high throughput based on flexible substrates, hence largely reduced OLED manufacturing cost. This paper will outline the present status of R2R OLED fabrication on ultra-thin glass with the focus on transparent OLED devices and how to perform segmentation by printing of silver- and dielectric pastes. Ultra-thin glass (UTG) is laminated on a PET film to avoid fabrication interruptions when glass cracks occur during the Roll-to-Roll process. The R2R fabricated flexible OLEDs also show key-values comparable to conventional OLEDs fabricated on small rigid glass in lab-scale.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 892
Author(s):  
Dieter Reenaers ◽  
Wouter Marchal ◽  
Ianto Biesmans ◽  
Philippe Nivelle ◽  
Jan D’Haen ◽  
...  

The field of printed electronics is rapidly evolving, producing low cost applications with enhanced performances with transparent, stretchable properties and higher reliability. Due to the versatility of printed electronics, industry can consider the implementation of electronics in a way which was never possible before. However, a post-processing step to achieve conductive structures—known as sintering—limits the production ease and speed of printed electronics. This study addresses the issues related to fast sintering without scarifying important properties such as conductivity and surface roughness. A drop-on-demand inkjet printer is employed to deposit silver nanoparticle-based inks. The post-processing time of these inks is reduced by replacing the conventional oven sintering procedure with the state-of-the-art method, named near-infrared sintering. By doing so, the post-processing time shortens from 30–60 min to 6–8 s. Furthermore, the maximum substrate temperature during sintering is reduced from 200 °C to 120 °C. Based on the results of this study, one can conclude that near-infrared sintering is a ready-to-industrialize post-processing method for the production of printed electronics, capable of sintering inks at high speed, low temperature and with low complexity. Furthermore, it becomes clear that ink optimization plays an important role in processing inkjet printable inks, especially after being near-infrared sintered.


2005 ◽  
Vol 865 ◽  
Author(s):  
Dirk Herrmann ◽  
Friedrich Kessler ◽  
Ulf Klemm ◽  
Robert Kniese ◽  
Theresa Magorian Friedlmeier ◽  
...  

AbstractCIGS (Cu(In,Ga)Se2) thin-film solar modules on glass substrates are currently on the verge of commercialization. Entirely new application areas could be accessed with CIGS modules fabricated on thin and flexible non-glass substrates. Additionally, the roll-to-roll manufacturing of such flexible CIGS modules promises to be a low-cost production method. Different external Na supply methods and a vacuum-deposited buffer were investigated in this contribution, a sample of the challenges we face when modifying the standard, industrial CIGS module production process to the particular requirements of flexible substrates. Both metal foil substrates and polymer films are considered. Our excellent best results of above 14 % for single cells on titanium, more than 11% on polyimide, and around 7 % for modules on both substrates indicate our progress in developing flexible CIGS.


Author(s):  
Taehyeong Kim ◽  
Dongho Oh ◽  
Youngjin Kim ◽  
Jihyeon Kim ◽  
Byeongcheol Lee

Printed electronics is a next-generation process technology that is suitable for high speed and high volume production and can make electronic devices and circuits on flexible materials. To commercialize printed electronics, it is necessary to improve the alignment precision of printing. In order to improve the alignment precision of the roll-to-roll process, accurate measurement of the web position is required. Therefore, in the previous research of this paper, we proposed a measurement system of the moving direction and the lateral movement using an encoder. However, in the previous study, the direction of error control had to be set according to the measurement position of the encoder, and the measurement range was so narrow. In this paper, we propose a measurement system that can detect the direction of error and increase the effective measurement range using the burst alignment pattern that generates the burst signal. Applying it to roll-to-roll printing position measurement systems, measurements can be performed with greatly improved efficiency and measurement range.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 885
Author(s):  
HyungTae Kim ◽  
Yoon Jae Moon ◽  
Heuiseok Kang ◽  
Jun Yong Hwang

In printed electronics, laser ablation is used to repair defective patterns on transparent, flexible, and thin films, using high-power lasers. The distance between the film surface and laser focus is sensitive to changes as the narrow focus depth of the lens is the range of tens of microns. However, a film fixed on a conductive vacuum chuck (CVC) is always curved, owing to chucking bending; thus, laser focusing must be locally performed before ablation. Therefore, this study proposes a non-contact measurement method for the surface flatness of a transparent and thin film, to compensate for laser defocusing in a large area. The surface flatness was obtained using camera-focus points on the porous surface of the CVC. The focus points were interpolated to achieve a smooth and continuous surface flatness for chucking bending. A laser distance sensor was used to verify the surface flatness from the proposed method. The surface flatness was used to inspect the printed patterns, and to perform laser ablation on the film. The proposed method is advantageous for large-area laser ablation and is expected to become indispensable for repairing machines in printed electronics.


2003 ◽  
Vol 763 ◽  
Author(s):  
A. Kampmann ◽  
J. Rechid ◽  
A. Raitzig ◽  
S. Wulff ◽  
M. Mihhailova ◽  
...  

AbstractThe development of a low cost roll-to-roll production process for CIGS remains an attractive goal. In the present approach, the absorber is prepared by electrodeposition techniques, while molybdenum, copper or stainless steel (SS) are used as flexible substrates. Two electrodeposition routes are evaluated: sequential plating of Cu, In and Ga followed by Se evaporation is compared to simultaneous (= ternary) electrodeposition of Cu, In and Se. Ternary electrodeposition yields 7.5 % efficiency on stainless steel. The sequential process leads to 9.0 % cell efficiency on copper and on stainless steel substrates.


Sign in / Sign up

Export Citation Format

Share Document