scholarly journals An oligogenic risk model for Gilles de la Tourette syndrome based on whole-genome sequencing data

Author(s):  
Malgorzata Borczyk ◽  
Jakup P Fichna ◽  
Marcin Piechota ◽  
Sławomir Gołda ◽  
Michał Korostyński ◽  
...  

Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder from the spectrum of tic disorders (TDs). GTS and other TDs have a substantial genetic component with the heritability estimated at between 60 and 80%. Here we propose an oligogenic risk model of GTS and other TDs using whole-genome sequencing (WGS) data from a group of Polish GTS patients and their families (n=185). The model is based on the overrepresentation of putatively pathogenic coding and non-coding genetic variants in genes selected from a set of 86 genes previously suggested to be associated with GTS. Based on the variant overrepresentation (SKAT test results) between unrelated GTS patients and controls based on gnomAD database allele frequencies five genes (HDC, CHADL, MAOA, NAA11, and PCDH10) were selected for the risk model. Putatively pathogenic variants (n = 98) with the median allele frequency of ~0.04 in and near these genes were used to build an additive classifier which was then validated on the GTS patients and their families. This risk model successfully assigned individuals from 22 families to either healthy or GTS groups (AUC-ROC = 0.6, p < 0.00001). These results were additionally validated using the GTS GWAS data from the Psychiatric Genomic Consortium. To investigate the GTS genetics further we identified 32 genes from the list of 86 genes as candidate genes in 14 multiplex families, including NEGR1 and NRXN with variants overrepresented in multiple families. WGS data allowed the construction of an oligogenic risk model of GTS based on possibly pathogenic variants likely contributing to the risk of GTS and TDs. The model includes putatively deleterious rare and non-coding variants in and near GTS candidate genes that may cooperatively contribute to GTS etiology and provides a novel approach to the analysis of clinical WGS data.

2020 ◽  
Author(s):  
Evin M. Padhi ◽  
Tristan J. Hayeck ◽  
Brandon Mannion ◽  
Sumantra Chatterjee ◽  
Marta Byrska-Bishop ◽  
...  

AbstractPrevious research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of de novo protein-coding variants within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2,671 families with autism, with a specific focus on de novo variation in enhancers with previously characterized in vivo activity. We identified three independent de novo mutations limited to individuals with autism in the enhancer hs737. These mutations result in similar phenotypic characteristics, affect enhancer activity in vitro, and preferentially occur in AAT motifs in the enhancer with predicted disruptions of transcription factor binding. We also find that hs737 is enriched for copy number variation in individuals with NDDs, is dosage sensitive in the human population, is brain-specific, and targets the NDD gene EBF3 that is genome-wide significant for protein coding de novo variants, demonstrating the importance of understanding all forms of variation in the genome.One Sentence SummaryWhole-genome sequencing in thousands of families reveals variants relevant to simplex autism in a brain enhancer of the well-established neurodevelopmental disorder gene EBF3.


Heredity ◽  
2021 ◽  
Author(s):  
Axel Jensen ◽  
Mette Lillie ◽  
Kristofer Bergström ◽  
Per Larsson ◽  
Jacob Höglund

AbstractThe use of genetic markers in the context of conservation is largely being outcompeted by whole-genome data. Comparative studies between the two are sparse, and the knowledge about potential effects of this methodology shift is limited. Here, we used whole-genome sequencing data to assess the genetic status of peripheral populations of the wels catfish (Silurus glanis), and discuss the results in light of a recent microsatellite study of the same populations. The Swedish populations of the wels catfish have suffered from severe declines during the last centuries and persists in only a few isolated water systems. Fragmented populations generally are at greater risk of extinction, for example due to loss of genetic diversity, and may thus require conservation actions. We sequenced individuals from the three remaining native populations (Båven, Emån, and Möckeln) and one reintroduced population of admixed origin (Helge å), and found that genetic diversity was highest in Emån but low overall, with strong differentiation among the populations. No signature of recent inbreeding was found, but a considerable number of short runs of homozygosity were present in all populations, likely linked to historically small population sizes and bottleneck events. Genetic substructure within any of the native populations was at best weak. Individuals from the admixed population Helge å shared most genetic ancestry with the Båven population (72%). Our results are largely in agreement with the microsatellite study, and stresses the need to protect these isolated populations at the northern edge of the distribution of the species.


Sign in / Sign up

Export Citation Format

Share Document