scholarly journals Test-retest reproducibility of in vivo magnetization transfer ratio and saturation index in mice at 9.4 Tesla

2021 ◽  
Author(s):  
Naila Rahman ◽  
Jordan Ramnarine ◽  
Kathy Xu ◽  
Arthur Brown ◽  
Corey A Baron

Background: Magnetization transfer saturation (MTsat) imaging was developed to reduce T1 dependence and improve specificity to myelin compared to the widely used MT ratio (MTR), while maintaining a feasible scan time. Knowledge of MTsat reproducibility is necessary to apply MTsat in preclinical neuroimaging. Purpose: To assess the test-retest reproducibility of MTR and MTsat in the mouse brain at 9.4 T and calculate sample sizes required to detect various effect sizes. Study Type: Prospective. Animal Model: C57Bl/6 Mouse Model (6 females and 6 males, aged 12 to 14 weeks). Field Strength/Sequence: Magnetization Transfer Imaging at 9.4 T. Assessment: All mice were scanned at two timepoints (5 days apart). MTR and MTsat maps were analyzed using mean region of interest (ROI), and whole brain voxel-wise analysis. Statistical Tests: Bland Altman plots assessed biases between test and retest measurements. Test retest reproducibility was evaluated via between and within-subject coefficients of variation (CV). Sample sizes required were calculated (at a 95 % significance level and power of 80 %), given various minimum detectable effect sizes, using both between and within-subject approaches. Results: Bland Altman plots showed negligible biases between test and retest sessions. ROI based and voxel-wise CVs revealed high reproducibility for both MTR (ROI: CVs < 8 %) and MTsat (ROI: CVs < 10 %). With a sample size of 6, changes on the order of 15% can be detected in MTR and MTsat, both between and within subjects, while smaller changes (6 to 8 %) require sample sizes of 10 to 15 for MTR, and 15 to 20 for MTsat. Data Conclusion: MTsat exhibits comparable reproducibility to MTR, while providing sensitivity to myelin with less T1 dependence than MTR. Our findings suggest both MTR and MTsat can detect moderate changes, common in pathologies, with feasible preclinical sample sizes. Keywords: magnetization transfer ratio, magnetization transfer saturation, reproducibility, preclinical rodent imaging

Brain ◽  
2021 ◽  
Author(s):  
Matteo Pardini ◽  
J William L Brown ◽  
Roberta Magliozzi ◽  
Richard Reynolds ◽  
Declan T Chard

Abstract While multiple sclerosis can affect any part of the CNS, it does not do so evenly. In white matter it has long been recognized that lesions tend to occur around the ventricles, and grey matter lesions mainly accrue in the outermost (subpial) cortex. In cortical grey matter, neuronal loss is greater in the outermost layers. This cortical gradient has been replicated in vivo with magnetization transfer ratio and similar gradients in grey and white matter magnetization transfer ratio are seen around the ventricles, with the most severe abnormalities abutting the ventricular surface. The cause of these gradients remains uncertain, though soluble factors released from meningeal inflammation into the CSF has the most supporting evidence. In this Update, we review this ‘surface-in’ spatial distribution of multiple sclerosis abnormalities and consider the implications for understanding pathogenic mechanisms and treatments designed to slow or stop them.


NeuroImage ◽  
2010 ◽  
Vol 49 (4) ◽  
pp. 3015-3026 ◽  
Author(s):  
Steffen Volz ◽  
Ulrike Nöth ◽  
Anna Rotarska-Jagiela ◽  
Ralf Deichmann

2006 ◽  
Vol 12 (5) ◽  
pp. 662-665 ◽  
Author(s):  
A Charil ◽  
D Caputo ◽  
R Cavarretta ◽  
M P Sormani ◽  
P Ferrante ◽  
...  

Background Magnetization transfer ratio (MTR) permits the quantitative estimation of cervical cord tissue damage in patients with multiple sclerosis (MS). Objective To determine whether a single time-point MTR scan of the cervical cord is associated with short-term disease evolution in patients with relapsing-remitting (RR) MS. Methods Using a 1.5-T magnetic resonance imaging (MRI) system with a tailored cervical cord phased array coil, fast short-tau inversion recovery (fast-STIR) and MTR scans were obtained from 14 untreated patients with RRMS at baseline. Cervical cord MTR histograms were derived. Over the 18- month follow-up period, relapse rate was measured and disability assessed by the Expanded Disability Status Scale (EDSS) score. Results Average cervical cord MTR was correlated with relapse rate ( r= -0.56, P = 0.037). A moderate correlation ( r values ranging from -0.33 to -0.36) between baseline cervical cord MTR metrics and EDSS changes over 18 months was also noted, albeit statistical significance was not reached ( P = 0.26 and 0.21, respectively) perhaps because of the relatively small sample size. Conclusions This study suggests that a ‘snapshot’ MT MRI assessment of the cervical cord may detect cervical cord tissue changes associated with short-term disease evolution in RRMS.


2018 ◽  
Vol 49 (6) ◽  
pp. 1777-1785 ◽  
Author(s):  
Benoit Combès ◽  
Laureline Monteau ◽  
Elise Bannier ◽  
Virginie Callot ◽  
Pierre Labauge ◽  
...  

2018 ◽  
Vol 53 (7) ◽  
pp. 397-402 ◽  
Author(s):  
Jennifer Kollmer ◽  
Thorsten Kästel ◽  
Johann M.E. Jende ◽  
Martin Bendszus ◽  
Sabine Heiland

2018 ◽  
Vol 315 (5) ◽  
pp. F1252-F1260 ◽  
Author(s):  
Kai Jiang ◽  
Tristan A. Ponzo ◽  
Hui Tang ◽  
Prasanna K. Mishra ◽  
Slobodan I. Macura ◽  
...  

The rodent model of folic acid (FA)-induced acute kidney injury (AKI) provides a useful model for studying human AKI, but little is known about longitudinal changes in renal hemodynamics and evolution of renal fibrosis in vivo. In this work, we aimed to longitudinally assess renal structural and functional changes using multiparametric magnetic resonance imaging (MRI). Ten adult mice were injected with FA, after which a multiparametric MRI was used to measure kidney volume, hypoxia index R2*, magnetization transfer ratio (MTR), perfusion, T1, and glomerular filtration rate (GFR) at 2 wk posttreatment. Then five mice were euthanized for histology, and the other five underwent MRI again at 4 wk, followed by histology. Control mice ( n = 5) were injected with vehicle and studied with MRI at 2 wk. Trichrome and hematoxylin-eosin staining were performed to assess FA-induced tissue injuries. Whereas kidney size and oxygenation showed progressive deterioration, a transient impairment in renal perfusion and normalized GFR slightly improved by 4 wk. Kidney fluid content, as reflected by T1, was prominent at 2 wk and tended to regress at 4 wk, consistent with observed tubular dilation. Trichrome staining revealed patchy necrosis and mild interstitial fibrosis at 2 wk, which exacerbated at 4 wk. MTR detected increased fibrosis at 4 wk. In conclusion, multiparametric MRI captured the longitudinal progression in kidney damage evolving within the first month after treatment with folic acid and may provide a useful tool for assessment of therapeutic strategies.


2020 ◽  
Vol 7 (5) ◽  
pp. 799-807 ◽  
Author(s):  
Jennifer Kollmer ◽  
Ute Hegenbart ◽  
Christoph Kimmich ◽  
Ernst Hund ◽  
Jan C. Purrucker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document