scholarly journals Dynamics of CTCF and cohesin mediated chromatin looping revealed by live-cell imaging

2021 ◽  
Author(s):  
Michele Gabriele ◽  
Hugo B Brandão ◽  
Simon Grosse-Holz ◽  
Asmita Jha ◽  
Gina M Dailey ◽  
...  

Animal genomes are folded into loops and topologically associating domains (TADs) by CTCF and cohesin, but whether these loops are stable or dynamic is unknown. Here, we directly visualize chromatin looping at the Fbn2 TAD in mouse embryonic stem cells using super-resolution live-cell imaging and quantify looping dynamics by Bayesian inference. Our results are consistent with cohesin-mediated loop extrusion in cells, and with CTCF both stopping and stabilizing cohesin. Surprisingly, the Fbn2 loop is both rare and dynamic, with a looped fraction of ~3-6.5% and a median loop lifetime of ~10-30 minutes. Instead of a stable loop, our results establish a highly dynamic view of TADs and loops where the Fbn2 TAD exists predominantly in a partially extruded conformation. This dynamic and quantitative view of TADs may facilitate a mechanistic understanding of their functions.

2017 ◽  
Vol 67 (2) ◽  
pp. 282-293.e7 ◽  
Author(s):  
Tadasu Nozaki ◽  
Ryosuke Imai ◽  
Mai Tanbo ◽  
Ryosuke Nagashima ◽  
Sachiko Tamura ◽  
...  

2015 ◽  
Vol 17 (suppl 5) ◽  
pp. v41.3-v41
Author(s):  
Xin Mei ◽  
Yinsheng Chen ◽  
Zhongping Chen

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Andrea Cuentas-Condori ◽  
Ben Mulcahy ◽  
Siwei He ◽  
Sierra Palumbos ◽  
Mei Zhen ◽  
...  

Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in C. elegans (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that C. elegans motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca++ stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of C. elegans genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.


ACS Nano ◽  
2018 ◽  
Vol 12 (6) ◽  
pp. 5741-5752 ◽  
Author(s):  
Bo Zhi ◽  
Yi Cui ◽  
Shengyang Wang ◽  
Benjamin P. Frank ◽  
Denise N. Williams ◽  
...  

2020 ◽  
Vol 98 (5) ◽  
pp. 612-623
Author(s):  
Adam Tepperman ◽  
David Jiao Zheng ◽  
Maria Abou Taka ◽  
Angela Vrieze ◽  
Austin Le Lam ◽  
...  

Using multiple imaging modalities while performing independent experiments in parallel can greatly enhance the throughput of microscopy-based research, but requires the provision of appropriate experimental conditions in a format that meets the optical requirements of the microscope. Although customized imaging chambers can meet these challenges, the difficulty of manufacturing custom chambers and the relatively high cost and design inflexibility of commercial chambers has limited the adoption of this approach. Herein, we demonstrate the use of 3D printing to produce inexpensive, customized, live-cell imaging chambers that are compatible with a range of imaging modalities, including super-resolution microscopy. In this approach, biocompatible plastics are used to print imaging chambers designed to meet the specific needs of an experiment, followed by adhesion of the printed chamber to a glass coverslip, producing a chamber that is impermeant to liquids and that supports the growth and imaging of cells over multiple days. This approach can also be used to produce moulds for casting microfluidic devices made of polydimethylsiloxane. The utility of these chambers is demonstrated using designs for multiplex microscopy, imaging under shear, chemotaxis, and general cellular imaging. Together, this approach represents an inexpensive yet highly customizable approach for producing imaging chambers that are compatible with modern microscopy techniques.


2020 ◽  
Vol 13 (4) ◽  
pp. 045002
Author(s):  
Tomu Suzuki ◽  
Shinji Kajimoto ◽  
Narufumi Kitamura ◽  
Mayumi Takano-Kasuya ◽  
Naoko Furusawa ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e116109 ◽  
Author(s):  
Aurélia Guyochin ◽  
Sylvain Maenner ◽  
Erin Tsi-Jia Chu ◽  
Asma Hentati ◽  
Mikael Attia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document