scholarly journals Oxoglutarate dehydrogenase coordinates myofibril growth by maintaining amino acid homeostasis

2021 ◽  
Author(s):  
Nicanor González Morales ◽  
Océane Marescal ◽  
Szilárd Szikora ◽  
Miklos Erdelyi ◽  
Péter Bíró ◽  
...  

Myofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibril cables. Muscle contraction is achieved by the simultaneous shortening of sarcomeres and for a highly coordinated contraction to occur all sarcomeres should have the same size. Muscles have evolved a variety of ways to ensure sarcomere homogeneity, one example being the controlled oligomerization of Zasp proteins that sets the diameter of the myofibril. To understand how Zasp proteins effect myofibril growth, we looked for Zasp-binding proteins at the Z-disc. We found that the E1 subunit of the oxoglutarate dehydrogenase complex is recruited to the Z-disc by Zasp52 and is required to sustain myofibril growth. By making specific mutants, we show that its enzymatic activity is important for myofibril growth, and that the other two subunits of the complex are also required for myofibril formation. Using super resolution microscopy, we revealed the overall organization of the complex at the Z-disc. Then, using metabolomic analysis, we uncovered an amino acid balance defect affecting protein synthesis, that we also confirmed by genetic tools. In summary, we show that Zasp controls the local amino acid pool responsible for myofibril growth by recruiting the OGDH complex to the Z-disc.

2016 ◽  
Vol 09 (03) ◽  
pp. 1630010 ◽  
Author(s):  
Jianling Chen ◽  
Caimin Qiu ◽  
Minghai You ◽  
Xiaogang Chen ◽  
Hongqin Yang ◽  
...  

Optical microscopy allows us to observe the biological structures and processes within living cells. However, the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light diffraction. Structured illumination microscopy (SIM), a type of new emerging super-resolution microscopy, doubles the spatial resolution by illuminating the specimen with a patterned light, and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy. In addition, SIM is easier to combine with the other imaging techniques to improve their imaging resolution, leading to the developments of diverse types of SIM. SIM has great potential to meet the various requirements of living cells imaging. Here, we review the recent developments of SIM and its combination with other imaging techniques.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Weng Man Chong ◽  
Won-Jing Wang ◽  
Chien-Hui Lo ◽  
Tzu-Yuan Chiu ◽  
Ting-Jui Chang ◽  
...  

Subdistal appendages (sDAPs) are centriolar elements that are observed proximal to the distal appendages (DAPs) in vertebrates. Despite the obvious presence of sDAPs, structural and functional understanding of them remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring, respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework for sDAPs that sheds light on functional understanding, surprisingly revealing coupling between DAPs and sDAPs.


2020 ◽  
Author(s):  
Mónica Berjón-Otero ◽  
Sarah Duponchel ◽  
Thomas Hackl ◽  
Matthias Fischer

AbstractGiant DNA viruses of the phylum Nucleocytoviricota are being increasingly recognized as important regulators of natural protist populations. However, our knowledge of their infection cycles is still very limited due to a lack of cultured virus-host systems and molecular tools to study them. Here, we apply bioorthogonal noncanonical amino acid tagging (BONCAT) to pulse label the marine heterotrophic flagellate Cafeteria burkhardae during infection with the lytic giant virus CroV. In absence of CroV, we report efficient incorporation of the L-methionine analog L-azidohomoalanine (AHA) into newly synthesized proteins of the methionine prototrophic C. burkhardae. During CroV infection, AHA was predominantly found in viral proteins, and single CroV virions were imaged with stimulated emission depletion (STED) super-resolution microscopy. CroV particles incorporated AHA with 95-100% efficiency while retaining their infectivity, which makes BONCAT/STED a powerful tool to study viral replication cycles in this ecologically relevant marine bacterivore.SignificanceGiant DNA viruses are the dominant class of protist-infecting viruses, yet the vast majority of described giant virus-protist systems remain uncultured. One of the better studied cultured systems is composed of the stramenopile Cafeteria burkhardae (previously C. roenbergensis), the giant Cafeteria roenbergensis virus (CroV) and the virophage mavirus. C. burkhardae is a widespread marine phagotrophic protist that plays an important role in regulating bacterial populations. In addition to being grazed upon by larger zooplankton, C. burkhardae populations are controlled by the lytic giant virus CroV. In turn, CroV is parasitized by the virophage mavirus that increases host population survival in the presence of CroV and forms a mutualistic symbiosis with its host. Despite being of fundamental ecological and evolutionary interest, this tripartite host-virus-virophage system suffers from a lack of molecular tools. Here, we show that CroV particles can be fluorescently labeled and imaged by super-resolution microscopy. To achieve this we established robust procedures for analyzing protist and viral populations and implemented the use of bioorthogonal noncanonical amino acid tagging (BONCAT) in a marine unicellular flagellate.


FEBS Letters ◽  
1987 ◽  
Vol 222 (1) ◽  
pp. 211-214 ◽  
Author(s):  
Andrew P. Bradford ◽  
Alastair Aitken ◽  
Fatima Beg ◽  
Kenneth G. Cook ◽  
Stephen J. Yeaman

Amino Acids ◽  
2012 ◽  
Vol 44 (2) ◽  
pp. 683-700 ◽  
Author(s):  
Wagner L. Araújo ◽  
Lidia Trofimova ◽  
Garik Mkrtchyan ◽  
Dirk Steinhauser ◽  
Leonard Krall ◽  
...  

2015 ◽  
Vol 51 (84) ◽  
pp. 15382-15385 ◽  
Author(s):  
Felix Friedrich ◽  
Kathrin Klehs ◽  
Manuela A. H. Fichte ◽  
Stephan Junek ◽  
Mike Heilemann ◽  
...  

The first photolabile quencher for ATTO565 is presented and the application of the new construct in super-resolution microscopy is demonstrated.


Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 42-51
Author(s):  
S. S. Ryabichko ◽  
◽  
A. N. Ibragimov ◽  
L. A. Lebedeva ◽  
E. N. Kozlov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document