Pharmacokinetics and Pharmacodynamics of Vancomycin derivative LYSC98 in a Murine Thigh Infection Model against Staphylococcus aureus

2021 ◽  
Author(s):  
Peng He ◽  
Xin Li ◽  
Xiaohan Guo ◽  
Xingchen Bian ◽  
Meiqing Feng

LYSC98 is a vancomycin derivative used for gram-positive bacterial infections therapy. We reported the pharmacokinetic/pharmacodynamic (PK/PD) targets of LYSC98 against Staphylococcus aureus using a murine thigh infection model. Three Staphylococcus aureus strains were utilized. Single-dose plasma pharmacokinetics of LYSC98 were determined in infected mice after the tail vein injection of 2, 4, and 8mg/kg. The results showed maximum plasma concentration (Cmax) 11466.67 -48866.67 ng/mL, area under the concentration-time curve from 0 to 24 h(AUC0-24) 14788.42 -91885.93 ng/mL·h, and elimination half-life(T1/2) 1.70-2.64 h, respectively. The Cmax (R2 0.9994) and AUC0-24 (R2 0.981) were positively correlated with the dose of LYSC98 in the range of 2-8 mg/kg. Dose fractionation studies using total doses of 2 to 8 mg/kg administered with q6h, q8h, q12h, and q24h were performed to evaluate the correlation of different PK/PD indices with efficacy. Sigmoid model analysis showed Cmax/MIC (R2 0.8941) was the best PK/PD index to predict the efficacy of LYSC98. In the dose ranging studies, two Methicillin-resistant Staphylococcus aureus (MRSA) clinical strains were used to infect the mice and 2-fold-increasing doses (1 to 16 mg/kg) of LYSC98 were administered. The magnitude of LYSC98 Cmax/MIC associated with net stasis, 1, 2, 3 and 4 - log10 kill were 5.78, 8.17, 11.14, 15.85 and 30.58, respectively. The results of this study showed LYSC98 a promising antibiotic with in vivo potency against MRSA, and will help in the dose design of phase one study for LYSC98.

2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Miao Zhao ◽  
Alexander J. Lepak ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
David R. Andes

ABSTRACT Eravacycline is a novel fluorocycline antibiotic with potent activity against a broad range of pathogens, including strains with tetracycline and other drug resistance phenotypes. The goal of the studies was to determine which pharmacokinetic/pharmacodynamic (PK/PD) parameter and magnitude best correlated with efficacy in the murine thigh infection model. Six Escherichia coli isolates were utilized for the studies. MICs were determined using CLSI methods and ranged from 0.125 to 0.25 mg/liter. A neutropenic murine thigh infection model was utilized for all treatment studies. Single-dose plasma pharmacokinetics were determined in mice after administration of 2.5, 5, 10, 20, 40, and 80 mg/kg of body weight. Pharmacokinetic studies exhibited maximum plasma concentration (C max) values of 0.34 to 2.58 mg/liter, area under the concentration-time curve (AUC) from time zero to infinity (AUC0–∞) values of 2.44 to 57.6 mg · h/liter, and elimination half-lives of 3.9 to 17.6 h. Dose fractionation studies were performed using total drug doses of 6.25 mg/kg to 100 mg/kg fractionated into 6-, 8-, 12-, or 24-h regimens. Nonlinear regression analysis demonstrated that the 24-h free drug AUC/MIC (fAUC/MIC) was the PK/PD parameter that best correlated with efficacy (R 2 = 0.80). In subsequent studies, we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC needed for the efficacy of eravacycline varied among pathogens. Mice were treated with 2-fold increasing doses (range, 3.125 to 50 mg/kg) of eravacycline every 12 h. The mean fAUC/MIC magnitudes associated with the net stasis and the 1-log-kill endpoints were 27.97 ± 8.29 and 32.60 ± 10.85, respectively.


2011 ◽  
Vol 55 (7) ◽  
pp. 3453-3460 ◽  
Author(s):  
Arnold Louie ◽  
Weiguo Liu ◽  
Robert Kulawy ◽  
G. L. Drusano

ABSTRACTTorezolid phosphate (TR-701) is the phosphate monoester prodrug of the oxazolidinone TR-700 which demonstrates potentin vitroactivity against Gram-positive bacteria, including methicillin-susceptibleStaphylococcus aureus(MSSA) and methicillin-resistantS. aureus(MRSA). The pharmacodynamics of TR-701 or TR-700 (TR-701/700) againstS. aureusis incompletely defined. Single-dose pharmacokinetic studies were conducted in mice for TR-701/700. Forty-eight-hour dose range and 24-hour dose fractionation studies were conducted in a neutropenic mouse thigh model ofS. aureusinfection using MRSA ATCC 33591 to identify the dose and schedule of administration of TR-701/700 that was linked with optimized antimicrobial effect. Additional dose range studies compared the efficacies of TR-701/700 and linezolid for one MSSA strain and one community-associated MRSA strain. In dose range studies, TR-701/700 was equally bactericidal against MSSA and MRSA. Mean doses of 37.6 and 66.9 mg/kg of body weight/day of TR-701/700 resulted in stasis and 1 log CFU/g decreases in bacterial densities, respectively, at 24 h, and mean doses of 35.3, 46.6, and 71.1 mg/kg/day resulted in stasis and 1 and 2 log CFU/g reductions, respectively, at 48 h. Linezolid administered at doses as high as 150 mg/kg/day did not achieve stasis at either time point. Dose fractionation studies demonstrated that the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) was the pharmacodynamic index for TR-701/700 that was linked with efficacy. TR-701/700 was highly active against MSSA and MRSA,in vivo, and was substantially more efficacious than linezolid, although linezolid's top exposure has half the human exposure. Dose fractionation studies showed that AUC/MIC was the pharmacodynamic index linked with efficacy, indicating that once-daily dosing in humans is feasible.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Miao Zhao ◽  
Alexander J. Lepak ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
David R. Andes

ABSTRACT NOSO-502 is a novel odilorhabdin antibiotic with potent activity against Enterobacteriaceae. The goal of these studies was to determine which pharmacokinetic/pharmacodynamic (PK/PD) indices and magnitude best correlated with efficacy in the murine thigh infection model. Six Escherichia coli and 6 Klebsiella pneumoniae isolates were utilized. MICs were determined using CLSI methods and ranged from 1 to 4 mg/liter. A neutropenic murine thigh infection model was utilized for all treatment studies. Single-dose plasma pharmacokinetics were determined in mice after subcutaneous administration of 7.81, 31.25, 125, and 500 mg/kg of body weight. Pharmacokinetic studies exhibited peak concentration (Cmax) values of 1.49 to 84.6 mg/liter, area under the concentration-time curve from 0 h to infinity (AUC0–∞) values of 1.94 to 352 mg · h/liter, and beta elimination half-lives of 0.41 to 1.1 h. Dose fractionation studies were performed using total drug doses of 7.81 mg/kg to 2,000 mg/kg fractionated into regimens of every 3 h (q3h), q6h, q12h, or q24h. Nonlinear regression analysis demonstrated that AUC/MIC was the PK/PD parameter that best correlated with efficacy (R2, 0.86). In subsequent studies, we used the neutropenic murine thigh infection model to determine the magnitude of NOSO-502 AUC/MIC needed for the efficacy against a diverse group of Enterobacteriaceae. Mice were treated with 4-fold-increasing doses (range, 3.91 to 1,000 mg/kg) of NOSO-502 every 6 h. The mean 24-h free-drug AUC/MIC (fAUC)/MIC) magnitudes associated with net stasis and 1-log kill endpoint for K. pneumoniae were 4.22 and 17.7, respectively. The mean fAUC/MIC magnitude associated with net stasis endpoint for E. coli was 10.4. NOSO-502 represents a promising novel, first-in-class odilorhabdin antibiotic with in vivo potency against Enterobacteriaceae.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S429-S429 ◽  
Author(s):  
Denis Daigle ◽  
Salvador Vernacchio ◽  
Luigi Xerri ◽  
Daniel Pevear

Abstract Background VNRX-5133 is a cyclic boronate β-lactamase inhibitor (BLI) in clinical development with cefepime for treatment of infections caused by ESBL- and carbapenemase producing Enterobacteriaceae and P. aeruginosa. It is a new generation broad-spectrum BLI with direct inhibitory activity against serine-active site and emerging metallo-β-lactamases (e.g., VIM/NDM). In previous in vivo and in vitro studies, the PK-PD driver of efficacy of VNRX-5133 was defined as AUC:MIC. Described herein are in vitro studies to assess the magnitude of VNRX-5133 exposure (AUC:MIC) required to restore efficacy of cefepime against a broad collection of KPC- and VIM/NDM-producing Enterobacteriaceae (ENT) and P. aeruginosa (PSA) clinical isolates. Methods Dose-fractionation studies, consisting of four VNRX-5133 exposures fractionated into regimens administered every 4, 8, 12 and 24 hours, were performed in an in vitro infection model with simulated 2 g q8h dosing of cefepime against NDM-1 producing E. coli. A Hill-type model described the relationship between change in log10 CFU at 24 hours and VNRX-5133 exposure (AUC:MIC), where cefepime MIC was determined with 4 µg/mL VNRX-5133. To evaluate variability of efficacy enabled by VNRX-5133 between isolates as well as between Serine-BL and Metallo-BL producers, dose-ranging studies were completed for eight isolates (seven ENT and one PSA) producing KPC or VIM/NDM metallo-β-lactamases. Results The PK-PD exposure parameter AUC:MIC accurately described the efficacy of VNRX-5133 in rescuing cefepime activity against KPC and VIM/NDM carbapenemase-producing isolates of ENT and PSA. The AUC:MIC ratios associated with net bacterial stasis, 1-, and 2-log10 reductions in bacterial burden from baseline were 6.1, 18.4 and 45, respectively, for a collection of five VIM/NDM- and three KPC-producing isolates with cefepime MICs ranging from 4–8 µg/mL with no significant differences observed between Ser-BL and MBL producers. Conclusion These data confirm the equivalent in vitro activity of cefepime/VNRX-5133 against organisms producing serine- and metallo-β-lactamases and provides an initial PK-PD target for VNRX-5133 efficacy when used in combination with cefepime for the treatment of ESBL- and carbapenemase-producing ENT and PSA infections. Disclosures D. Daigle, VenatoRx Pharmaceuticals Inc.: Employee and Shareholder, Salary. S. Vernacchio, VenatoRx Pharmaceuticals Inc.: Employee and Shareholder, Salary. L. Xerri, VenatoRx Pharmaceuticals Inc.: Employee and Shareholder, Salary. D. Pevear, VenatoRx Pharmaceuticals Inc.: Employee, Salary.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S311-S311 ◽  
Author(s):  
Lindsay M Avery ◽  
Kamilia Abdelraouf ◽  
David P Nicolau

Abstract Background There is a pressing need for development of oral antibiotics with activity against SBL-EB, particularly carbapenemase-producers, for use in the community or as step-down therapy for complicated urinary tract infection. VNRX-7145 is a novel boronic acid-based SBL inhibitor with no intrinsic activity that was designed as an orally bioavailable prodrug. The active moiety (VNRX-5236) is known to restore in vitro susceptibility to (CTB), an oral cephalosporin, among CTB-resistant SBL-EB. Methods CTB-resistant SBL-EB (N = 21) with CTB MICs ≥32 µg/mL and CTB/VNRX-5236 MIC range 0.12–2 µg/mL (VNRX-5236 fixed at 4 µg/mL) were evaluated. Carbapenemases were produced by 9 strains (4 OXA, 5 KPC). Bacterial suspensions (~107 CFU/mL) were used to inoculate the thighs of neutropenic mice. A human-simulated regimen of ceftibuten (CTB HSR) equivalent to a 400 mg q12h dosage was developed in infected mice. In dose ranging studies, groups of 3 animals each received the CTB HSR as monotherapy or combined with escalating VNRX-5236 exposures (CTB:VNRX-5236 dose ratios ranging from 10:1 to 1:4). Efficacy was assessed as the change in log10 CFU/thigh at 24 hours from 0 hour burden. With previous in vivo dose fractionation studies indicating the free area under the VNRX-5236 concentration–time curve to MIC ratio (fAUC0-24/MIC) as the PK/PD driver of efficacy, the Hill equation was used to estimate the magnitude required to achieve a static endpoint. Results Compared with 0 hour controls (mean log10 CFU/thigh, 5.7 ± 0.3), the bacterial burden for all isolates increased in saline-dosed controls and CTB HSR groups by 3.1 ± 0.8 and 2.5 ± 0.8 log10 CFU/thigh, respectively. The addition of VNRX-5236 resulted in bacterial stasis in 20/21 strains; the mean reduction in bacterial burden with the 1:1 CTB:VNRX-5236 dose ratio was −0.2 ± 0.7 log10 CFU/thigh. A composite assessment of exposure-responses indicated a fAUC0-24/MIC of 9.0 (R2 = 0.70) was associated with stasis. Conclusion Against CTB-resistant SBL-EB, inclusive of OXA-48- and KPC-producing strains, VNRX-5236 potentiated the in vivo activity of the CTB human-simulated exposure. The identified fAUC0-24/MIC target associated with bacterial stasis should be considered when selecting VNRX-7145 doses for clinical studies. Disclosures All authors: No reported disclosures.


2010 ◽  
Vol 54 (12) ◽  
pp. 5115-5119 ◽  
Author(s):  
Jared L. Crandon ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACT Telavancin displays potent in vitro and in vivo activity against methicillin-resistant Staphylococcus aureus (MRSA), including strains with reduced susceptibility to vancomycin. We compared the efficacies of telavancin and vancomycin against MRSA strains with vancomycin MICs of ≥1 μg/ml in a neutropenic murine lung infection model. Thirteen clinical MRSA isolates (7 vancomycin-susceptible, 2 vancomycin-heteroresistant [hVISA], and 4 vancomycin-intermediate [VISA] isolates) were tested after 24 h, and 7 isolates (1 hVISA and 4 VISA isolates) were tested after 48 h of exposure. Mice were administered subcutaneous doses of telavancin at 40 mg/kg of body weight every 12 h (q12h) or of vancomycin at 110 mg/kg q12h; doses were designed to simulate the area under the concentration-time curve for the free, unbound fraction of drug (fAUC) observed for humans given telavancin at 10 mg/kg q24h or vancomycin at 1 g q12h. Efficacy was expressed as the 24- or 48-h change in lung bacterial density from pretreatment counts. At dose initiation, the mean bacterial load was 6.16 ± 0.26 log10 CFU/ml, which increased by averages of 1.26 ± 0.55 and 1.74 ± 0.68 log in untreated mice after 24 and 48 h, respectively. At both time points, similar CFU reductions were noted for telavancin and vancomycin against MRSA, with vancomycin MICs of ≤2 μg/ml. Both drugs were similarly efficacious after 24 and 48 h of treatment against the hVISA strains tested. Against VISA isolates, telavancin reduced bacterial burdens significantly more than vancomycin for 1 of 4 isolates after 24 h and for 3 of 4 isolates after 48 h. These data support the potential utility of telavancin for the treatment of MRSA pneumonia caused by pathogens with reduced susceptibility to vancomycin.


2020 ◽  
Vol 64 (11) ◽  
Author(s):  
Alexander J. Lepak ◽  
Wen Wang ◽  
David R. Andes

ABSTRACT MRX-8 is a novel polymyxin analogue in development for the treatment of infections caused by Gram-negative pathogens, including those resistant to other antibiotic classes. In the present study, we examined the pharmacodynamic activity of MRX-8 against a variety of common Gram-negative pathogens in the neutropenic mouse thigh and lung models. Additionally, we examined polymyxin B (PMB) as a comparator. Plasma pharmacokinetics of MRX-8 and PMB were linear over a broad dosing range of 0.156 to 10 mg/kg of body weight and had similar AUC0–∞ (area under the drug concentration-time curve from 0 h to infinity) exposures of MRX-8, 0.22 to 12.64 mg · h/liter, and PMB, 0.12 to 13.22 mg · h/liter. Dose fractionation was performed for MRX-8 using a single Escherichia coli isolate, and the results demonstrated that both Cmax (maximum concentration of drug in serum)/MIC and AUC/MIC ratios were strongly associated with efficacy. In the thigh model, dose-ranging studies included strains of E. coli (n = 3), Pseudomonas aeruginosa (n = 2), Klebsiella pneumoniae (n = 3), and Acinetobacter baumannii (n = 1). Both MRX-8 and PMB exhibited increased effects with increasing doses. MRX-8 and PMB free AUC/MIC exposures for net stasis were similar for E. coli and K. pneumoniae at 20 to 30. Notably, for P. aeruginosa and A. baumannii, the free AUC/MIC ratio for stasis was numerically much smaller for MRX-8 at 6 to 8 than for PMB at 16 to 37. In the lung model, MRX-8 was also more effective than PMB when dosed to achieve similar free-drug AUC exposures over the study period. MRX-8 is a promising novel polymyxin analogue with in vivo activity against many different clinically relevant species in both the mouse thigh and lung models.


2011 ◽  
Vol 56 (1) ◽  
pp. 258-270 ◽  
Author(s):  
Arnold Louie ◽  
Mariana Castanheira ◽  
Weiguo Liu ◽  
Caroline Grasso ◽  
Ronald N. Jones ◽  
...  

ABSTRACTNew broad-spectrum β-lactamases such as KPC enzymes and CTX-M-15 enzymes threaten to markedly reduce the utility of our armamentarium of β-lactam agents, even our most potent drugs, such as carbapenems. NXL104 is a broad-spectrum non-β-lactam β-lactamase inhibitor. In this evaluation, we examined organisms carrying defined β-lactamases and identified doses and schedules of NXL104 in combination with the new cephalosporin ceftaroline, which would maintain good bacterial cell kill and suppress resistance emergence for a clinically relevant period of 10 days in our hollow-fiber infection model. We examined three strains ofKlebsiella pneumoniaeand one isolate ofEnterobacter cloacae. K. pneumoniae27-908M carried KPC-2, SHV-27, and TEM-1 β-lactamases. Its isogenic mutant,K. pneumoniae4207J, was “cured” of the plasmid expressing the KPC-2 enzyme.K. pneumoniae24-1318A carried a CTX-M-15 enzyme, andE. cloacae2-77C expressed a stably derepressed AmpC chromosomal β-lactamase. Dose-ranging experiments for NXL104 administered as a continuous infusion with ceftaroline at 600 mg every 8 h allowed identification of a 24-h area under the concentration-time curve (AUC) for NXL104 that mediated bactericidal activity and resistance suppression. Dose fractionation experiments identified that “time > threshold” was the pharmacodynamic index linked to cell kill and resistance suppression. Given these results, we conclude that NXL104 combined with ceftaroline on an 8-hourly administration schedule would be optimal for circumstances in which highly resistant pathogens are likely to be encountered. This combination dosing regimen should allow for optimal bacterial cell kill (highest likelihood of successful clinical outcome) and the suppression of resistance emergence.


2015 ◽  
Vol 59 (6) ◽  
pp. 3252-3256 ◽  
Author(s):  
Liana C. Chan ◽  
Li Basuino ◽  
Etyene C. Dip ◽  
Henry F. Chambers

ABSTRACTTedizolid, the active component of the prodrug tedizolid phosphate, is a novel oxazolidinone that is approximately 4 times more active by weight than linezolid againstStaphylococcus aureusin vitro. Thein vivoefficacy of tedizolid phosphate (15 mg/kg body weight intravenous [i.v.] twice a day [b.i.d.]) was compared to those of vancomycin (30 mg/kg i.v. b.i.d.) and daptomycin (18 mg/kg i.v. once a day [q.d.]) in a rabbit model of aortic valve endocarditis (AVE) caused by methicillin-resistantS. aureusstrain COL (infection inoculum of 107CFU). Median vegetation titers of daptomycin-treated rabbits were significantly lower than those of rabbits treated with tedizolid phosphate (15 mg/kg b.i.d.) (P= 0.016), whereas titers for vancomycin-treated compared to tedizolid-treated rabbits were not different (P= 0.984). The numbers of organisms in spleen and kidney tissues were similar for all treatment groups. A dose-ranging experiment was performed with tedizolid phosphate (2, 4, and 8 mg/kg b.i.d.) compared to vancomycin (30 mg/kg b.i.d.), using a higher infecting inoculum (108CFU) to determine the lowest efficacious dose of tedizolid phosphate. Tedizolid phosphate (2 mg/kg) (equivalent to 60% of the area under the concentration-time curve from 0 to 24 h (AUC0–24) for the human 200-mg dose approved by the U.S. Food and Drug Administration) was not efficacious. Tedizolid phosphate at 4 mg/kg (equivalent to 75% of the AUC0–24for the human 400-mg dose) and 8 mg/kg produced lower vegetation titers than the control, but neither was as efficacious as vancomycin.


2008 ◽  
Vol 52 (6) ◽  
pp. 2156-2162 ◽  
Author(s):  
Kerry L. LaPlante ◽  
Steven N. Leonard ◽  
David R. Andes ◽  
William A. Craig ◽  
Michael J. Rybak

ABSTRACT Controversy exists about the most effective treatment options for community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) and about the ability of these strains to develop inducible resistance to clindamycin during therapy. Using both in vitro pharmacodynamic and murine thigh infection models, we evaluated and compared several antimicrobial compounds against CA-MRSA. Strains with inducible macrolide lincosamide-streptogramin type B (iMLSB) resistance and strains in which resistance was noninducible were evaluated. Two levels of inocula (105 and 107) were evaluated for clindamycin activity in the in vivo model. In both models, the antimicrobial evaluation was performed in triplicate, and bacterial quantification occurred over 72 h, with drug doses that were designed to simulate the free drug area-under-the-concentration-time curve values (fAUCs) obtained from human samples. When the activity of clindamycin against the iMLSB strains was evaluated, constitutive resistance was noted at 24 h (MIC of >256), and failure was noted at an inoculum of ≥106 in the in vivo models. However, at a low inoculum (105) in the murine thigh-infection model, clindamycin demonstrated modest activity, reducing the CFU/thigh count for clindamycin resistance-inducible strains at 72 h (0.45 to 1.3 logs). Overall, administration of daptomycin followed by vancomycin demonstrated the most significant kill against all strains in both models. Against the clindamycin noninducible strain, clindamycin and doxycycline demonstrated significant kill. Doxycycline, linezolid, and trimethoprim-sulfamethoxazide (not run in the murine model) demonstrated bacteriostatic activity against clindamycin resistance-inducible isolates. This study demonstrates that clindamycin's activity against the iMLSB strains tested is partially impacted by inoculum size. At present, there are several alternatives that appear promising for treating clindamycin resistance-inducible strains of CA-MRSA.


Sign in / Sign up

Export Citation Format

Share Document