scholarly journals Sentimental Tweets Classification of Symptomatic COVID 19

2021 ◽  
Author(s):  
Tharun P

The approach I described is straightforward, related to COVID-19 SARS based tweets and the symptoms, that people tweet about. Also, social media mining for health application reports was shared in many different tasks of 2021. The motto at the back of this observe is to analyses tweets of COVID-19 based symptoms. By performing BERT model and text classification with XLNET with which uses to classify text and purpose of the texts (i.e.) tweets. So that I can get a deep understanding of the texts. When developing the system, I used two models the XLNet and DistilBERT for the text sorting task, but the outcome was XLNET out-performs the given approach to the best accuracy achieved. Now I discover a whole lot vital for as it should be categorizing tweets as encompassing self-said COVID-19 indications. Whether or not a tweets associated with COVID-19 is a non-public report or an information point out to the virus. Which gives test accuracy to an F1 score of 96%.

2018 ◽  
Vol 25 (10) ◽  
pp. 1274-1283 ◽  
Author(s):  
Abeed Sarker ◽  
Maksim Belousov ◽  
Jasper Friedrichs ◽  
Kai Hakala ◽  
Svetlana Kiritchenko ◽  
...  

AbstractObjectiveWe executed the Social Media Mining for Health (SMM4H) 2017 shared tasks to enable the community-driven development and large-scale evaluation of automatic text processing methods for the classification and normalization of health-related text from social media. An additional objective was to publicly release manually annotated data.Materials and MethodsWe organized 3 independent subtasks: automatic classification of self-reports of 1) adverse drug reactions (ADRs) and 2) medication consumption, from medication-mentioning tweets, and 3) normalization of ADR expressions. Training data consisted of 15 717 annotated tweets for (1), 10 260 for (2), and 6650 ADR phrases and identifiers for (3); and exhibited typical properties of social-media-based health-related texts. Systems were evaluated using 9961, 7513, and 2500 instances for the 3 subtasks, respectively. We evaluated performances of classes of methods and ensembles of system combinations following the shared tasks.ResultsAmong 55 system runs, the best system scores for the 3 subtasks were 0.435 (ADR class F1-score) for subtask-1, 0.693 (micro-averaged F1-score over two classes) for subtask-2, and 88.5% (accuracy) for subtask-3. Ensembles of system combinations obtained best scores of 0.476, 0.702, and 88.7%, outperforming individual systems.DiscussionAmong individual systems, support vector machines and convolutional neural networks showed high performance. Performance gains achieved by ensembles of system combinations suggest that such strategies may be suitable for operational systems relying on difficult text classification tasks (eg, subtask-1).ConclusionsData imbalance and lack of context remain challenges for natural language processing of social media text. Annotated data from the shared task have been made available as reference standards for future studies (http://dx.doi.org/10.17632/rxwfb3tysd.1).


Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


2018 ◽  
Vol 79 (8) ◽  
pp. 35-40
Author(s):  
M. I. Kuznetsova

One of the goals of the Russian language course in the primary school is the formation of the communicative literacy. The content of the course should be aimed at understanding the wealth of linguistic means by primary school children; the formation of the ability to detect a violation of linguistic norms and the inadequacy of the linguistic means used in the speech situation; the accumulation of the experience in choosing of linguistic means in accordance with the peculiarities of the speech situation; the creation of oral and written texts that meet the criteria of content, connectivity, compliance with the norms of the Russian literary language. The article considers the classification of exercises that contribute to the formation of communicative literacy. The author gives the examples of exercises where the student acts in different roles: the student is an observer of the speech situation and analyzes the adequacy of the choice of linguistic means; the student is a direct participant in the given speech situation and makes a choice of language facilities; the student is offered to create the speech situation himself, to independently construct an oral and written text.


Author(s):  
Jianping Ju ◽  
Hong Zheng ◽  
Xiaohang Xu ◽  
Zhongyuan Guo ◽  
Zhaohui Zheng ◽  
...  

AbstractAlthough convolutional neural networks have achieved success in the field of image classification, there are still challenges in the field of agricultural product quality sorting such as machine vision-based jujube defects detection. The performance of jujube defect detection mainly depends on the feature extraction and the classifier used. Due to the diversity of the jujube materials and the variability of the testing environment, the traditional method of manually extracting the features often fails to meet the requirements of practical application. In this paper, a jujube sorting model in small data sets based on convolutional neural network and transfer learning is proposed to meet the actual demand of jujube defects detection. Firstly, the original images collected from the actual jujube sorting production line were pre-processed, and the data were augmented to establish a data set of five categories of jujube defects. The original CNN model is then improved by embedding the SE module and using the triplet loss function and the center loss function to replace the softmax loss function. Finally, the depth pre-training model on the ImageNet image data set was used to conduct training on the jujube defects data set, so that the parameters of the pre-training model could fit the parameter distribution of the jujube defects image, and the parameter distribution was transferred to the jujube defects data set to complete the transfer of the model and realize the detection and classification of the jujube defects. The classification results are visualized by heatmap through the analysis of classification accuracy and confusion matrix compared with the comparison models. The experimental results show that the SE-ResNet50-CL model optimizes the fine-grained classification problem of jujube defect recognition, and the test accuracy reaches 94.15%. The model has good stability and high recognition accuracy in complex environments.


Information ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 149
Author(s):  
Yulin Chen

This research proposes a framework for the fashion brand community to explore public participation behaviors triggered by brand information and to understand the importance of key image cues and brand positioning. In addition, it reviews different participation responses (likes, comments, and shares) to build systematic image and theme modules that detail planning requirements for community information. The sample includes luxury fashion brands (Chanel, Hermès, and Louis Vuitton) and fast fashion brands (Adidas, Nike, and Zara). Using a web crawler, a total of 21,670 posts made from 2011 to 2019 are obtained. A fashion brand image model is constructed to determine key image cues in posts by each brand. Drawing on the findings of the ensemble analysis, this research divides cues used by the six major fashion brands into two modules, image cue module and image and theme cue module, to understand participation responses in the form of likes, comments, and shares. The results of the systematic image and theme module serve as a critical reference for admins exploring the characteristics of public participation for each brand and the main factors motivating public participation.


Author(s):  
K Sooknunan ◽  
M Lochner ◽  
Bruce A Bassett ◽  
H V Peiris ◽  
R Fender ◽  
...  

Abstract With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the eleven classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78%. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97%, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19%.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 134
Author(s):  
Loai Abdallah ◽  
Murad Badarna ◽  
Waleed Khalifa ◽  
Malik Yousef

In the computational biology community there are many biological cases that are considered as multi-one-class classification problems. Examples include the classification of multiple tumor types, protein fold recognition and the molecular classification of multiple cancer types. In all of these cases the real world appropriately characterized negative cases or outliers are impractical to achieve and the positive cases might consist of different clusters, which in turn might lead to accuracy degradation. In this paper we present a novel algorithm named MultiKOC multi-one-class classifiers based K-means to deal with this problem. The main idea is to execute a clustering algorithm over the positive samples to capture the hidden subdata of the given positive data, and then building up a one-class classifier for every cluster member’s examples separately: in other word, train the OC classifier on each piece of subdata. For a given new sample, the generated classifiers are applied. If it is rejected by all of those classifiers, the given sample is considered as a negative sample, otherwise it is a positive sample. The results of MultiKOC are compared with the traditional one-class, multi-one-class, ensemble one-classes and two-class methods, yielding a significant improvement over the one-class and like the two-class performance.


Sign in / Sign up

Export Citation Format

Share Document