scholarly journals Genomic characteristics of recently recognized Vibrio cholerae El Tor lineages associated with cholera in Bangladesh, 1991-2017

2021 ◽  
Author(s):  
Md Mamun Monir ◽  
Talal Hossain ◽  
Masatomo Morita ◽  
Makoto Ohnishi ◽  
Fatema-tuj Johura ◽  
...  

Comparative genomic analysis of Vibrio cholerae El Tor associated with endemic cholera in Asia revealed two distinct lineages, one dominant in Bangladesh and the other in India. An in depth whole genome study of V. cholerae El Tor clinical strains isolated during endemic cholera in Bangladesh (1991 – 2017) included reference genome sequence data obtained online. Core genome phylogeny established using single nucleotide polymorphisms (SNPs) showed V. choleraeEl Tor strains comprised two lineages, BD-1 and BD-2, which, according to Bayesian phylodynamic analysis, originated from paraphyletic group BD-0 around 1981. BD-1 and BD-2 lineages overlapped temporally but were negatively associated as causative agents of cholera 2004-2017. Genome wide association study (GWAS) revealed 140 SNPs and 31 indels, resulting in gene alleles unique to BD-1 and BD-2. Regression analysis of root to tip distance and year of isolation indicated early BD-0 strains at the base, whereas BD-1 and BD-2 subsequently emerged and progressed by accumulating SNPs. Pangenome analysis provided evidence of gene acquisition by both BD-1 and BD-2, of which six crucial proteins of known function were predominant in BD-2. BD-1 and BD-2 diverged and have distinctively different genomic traits, namely heterogeneity in VSP-2, VPI-1, mobile elements, toxin encoding elements, and total gene abundance. In addition, the observed phage-inducible chromosomal island-like element (PLE1), and SXT ICE elements (ICETET) in BD-2 presumably provided a fitness advantage for the lineage to outcompete BD-1 as the etiological agent of the endemic cholera in Bangladesh, with implications for global cholera epidemiology.

2016 ◽  
Vol 44 ◽  
pp. 471-478 ◽  
Author(s):  
Konstantin V. Kuleshov ◽  
Anna Kostikova ◽  
Sergey V. Pisarenko ◽  
Dmitry A. Kovalev ◽  
Sergey N. Tikhonov ◽  
...  

2018 ◽  
Author(s):  
Angus Angermeyer ◽  
Moon Moon Das ◽  
Durg Vijai Singh ◽  
Kimberley D. Seed

AbstractThe Vibrio cholerae biotype ‘El Tor’ is responsible for all current epidemic and endemic cholera outbreaks worldwide. These outbreaks are clonal and are hypothesized to originate from the coastal areas near the Bay of Bengal where the lytic bacteriophage ICP1 specifically preys upon these pathogenic outbreak strains. ICP1 has also been the dominant bacteriophage found in cholera patient stool since 2001. However, little is known about its genomic differences between ICP1 strains collected over time. Here we elucidate the pan-genome and phylogeny of ICP1 strains by aligning, annotating and analyzing the genomes of 19 distinct isolates collected between 2001 and 2012. Our results reveal that ICP1 isolates are highly conserved and possess a large core-genome as well as a smaller, somewhat flexible accessory-genome. Despite its overall conservation, ICP1 strains have managed to acquire a number of unknown genes as well as a CRISPR-Cas system, which is known to be critical for its ongoing struggle for co-evolutionary dominance over its host. This study describes a foundation on which to construct future molecular and bioinformatic studies of this V. cholerae-associated bacteriophages.


2009 ◽  
Vol 77 (9) ◽  
pp. 4161-4167 ◽  
Author(s):  
L. S. Burall ◽  
A. Rodolakis ◽  
A. Rekiki ◽  
G. S. A. Myers ◽  
P. M. Bavoil

ABSTRACT Comparative genomic analysis of a wild-type strain of the ovine pathogen Chlamydia abortus and its nitrosoguanidine-induced, temperature-sensitive, virulence-attenuated live vaccine derivative identified 22 single nucleotide polymorphisms unique to the mutant, including nine nonsynonymous mutations, one leading to a truncation of pmpG, which encodes a polymorphic membrane protein, and two intergenic mutations potentially affecting promoter sequences. Other nonsynonymous mutations mapped to a pmpG pseudogene and to predicted coding sequences encoding a putative lipoprotein, a sigma-54-dependent response regulator, a PhoH-like protein, a putative export protein, two tRNA synthetases, and a putative serine hydroxymethyltransferase. One of the intergenic mutations putatively affects transcription of two divergent genes encoding pyruvate kinase and a putative SOS response nuclease, respectively. These observations suggest that the temperature-sensitive phenotype and associated virulence attenuation of the vaccine strain result from disrupted metabolic activity due to altered pyruvate kinase expression and/or alteration in the function of one or more membrane proteins, most notably PmpG and a putative lipoprotein.


2002 ◽  
Vol 99 (3) ◽  
pp. 1556-1561 ◽  
Author(s):  
M. Dziejman ◽  
E. Balon ◽  
D. Boyd ◽  
C. M. Fraser ◽  
J. F. Heidelberg ◽  
...  

2019 ◽  
Author(s):  
Thomas Flouris ◽  
Xiyun Jiao ◽  
Bruce Rannala ◽  
Ziheng Yang

AbstractRecent analyses suggest that cross-species gene flow or introgression is common in nature, especially during species divergences. Genomic sequence data can be used to infer introgression events and to estimate the timing and intensity of introgression, providing an important means to advance our understanding of the role of gene flow in speciation. Here we implement the multispecies-coalescent-with-introgression (MSci) model, an extension of the multispecies-coalescent (MSC) model to incorporate introgression, in our Bayesian Markov chain Monte Carlo (MCMC) program BPP. The MSci model accommodates deep coalescence (or incomplete lineage sorting) and introgression and provides a natural framework for inference using genomic sequence data. Computer simulation confirms the good statistical properties of the method, although hundreds or thousands of loci are typically needed to estimate introgression probabilities reliably. Re-analysis of datasets from the purple cone spruce confirms the hypothesis of homoploid hybrid speciation. We estimated the introgression probability using the genomic sequence data from six mosquito species in the Anopheles gambiae species complex, which varies considerably across the genome, likely driven by differential selection against introgressed alleles.


2020 ◽  
Author(s):  
Marko Premzl

Abstract The eutherian genomics momentum greatly advanced biology and medicine. Nevertheless, future revisions and updates of eutherian genomic sequence data sets were expected, due to potential genomic sequence errors and incompleteness of genomic sequences. The eutherian comparative genomic analysis protocol was established as guidance in protection against potential genomic sequence errors in public eutherian genomic sequence assemblies. The protocol revised, updated and published 12 major eutherian gene data sets, including 1853 complete coding sequences deposited in European Nucleotide Archive as curated third party data gene data sets under accession numbers: FR734011-FR734074, HF564658-HF564785, HF564786-HF564815, HG328835-HG329089, HG426065-HG426183, HG931734-HG931849, LM644135-LM644234, LN874312-LN874522, LT548096-LT548244, LT631550-LT631670, LT962964-LT963174 and LT990249-LT990597.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prince Kumar ◽  
Mukesh K. Meghvansi ◽  
D. V. Kamboj

AbstractShigella has the remarkable capability to acquire antibiotic resistance rapidly thereby posing a significant public health challenge for the effective treatment of dysentery (Shigellosis). The phage therapy has been proven as an effective alternative strategy for controlling Shigella infections. In this study, we illustrate the isolation and detailed characterization of a polyvalent phage 2019SD1, which demonstrates lytic activity against Shigella dysenteriae, Escherichia coli, Vibrio cholerae, Enterococcus saccharolyticus and Enterococcus faecium. The newly isolated phage 2019SD1 shows adsorption time < 6 min, a latent period of 20 min and burst size of 151 PFU per bacterial cell. 2019SD1 exhibits considerable stability in a wide pH range and survives an hour at 50 °C. Under transmission electron microscope, 2019SD1 shows an icosahedral capsid (60 nm dia) and a 140 nm long tail. Further, detailed bioinformatic analyses of whole genome sequence data obtained through Oxford Nanopore platform revealed that 2019SD1 belongs to genus Hanrivervirus of subfamily Tempevirinae under the family Drexlerviridae. The concatenated protein phylogeny of 2019SD1 with the members of Drexlerviridae taking four genes (DNA Primase, ATP Dependent DNA Helicase, Large Terminase Protein, and Portal Protein) using the maximum parsimony method also suggested that 2019SD1 formed a distinct clade with the closest match of the taxa belonging to the genus Hanrivervirus. The genome analysis data indicate the occurrence of putative tail fiber proteins and DNA methylation mechanism. In addition, 2019SD1 has a well-established anti-host defence system as suggested through identification of putative anti-CRISPR and anti-restriction endonuclease systems thereby also indicating its biocontrol potential.


2019 ◽  
Author(s):  
Marko Premzl

Abstract The eutherian genomics momentum greatly advanced biology and medicine. Nevertheless, future revisions and updates of eutherian genomic sequence data sets were expected, due to potential genomic sequence errors and incompleteness of genomic sequences. The eutherian comparative genomic analysis protocol was established as guidance in protection against potential genomic sequence errors in public eutherian genomic sequence assemblies. The protocol revised, updated and published 11 major eutherian gene data sets, including 1504 complete coding sequences deposited in European Nucleotide Archive as curated third party data gene data sets under accession numbers: FR734011-FR734074, HF564658-HF564785, HF564786-HF564815, HG328835-HG329089, HG426065-HG426183, HG931734-HG931849, LM644135-LM644234, LN874312-LN874522, LT548096-LT548244, LT631550-LT631670 and LT962964-LT963174.


Sign in / Sign up

Export Citation Format

Share Document