accessory genome
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 41)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
George Filioussis ◽  
Georgios Bramis ◽  
Evanthia Petridou ◽  
Nektarios D. Giadinis ◽  
Laurent-Xavier Nouvel ◽  
...  

Abstract Background Mycoplasma agalactiae, causing agent of contagious agalactia, infects domestic small ruminants such as sheep and goats but also wild Caprinae. M. agalactiae is highly contagious and transmitted through oral, respiratory, and mammary routes spreading rapidly in an infected herd. Results In an outbreak of contagious agalactia in a mixed herd of sheep and goats, 80% of the goats were affected displaying swollen udders and loss of milk production but no other symptom such as kerato-conjunctivitis, arthritis or pulmonary distress commonly associated to contagious agalactia. Surprisingly, none of the sheep grazing on a common pasture and belonging to the same farm as the goats were affected. Whole genome sequencing and analysis of M. agalactiae strain GrTh01 isolated from the outbreak, revealed a previously unknown sequence type, ST35, and a particularly small, genome size of 841′635 bp when compared to others available in public databases. Overall, GrTh01 displayed a reduced accessory genome, with repertoires of gene families encoding variable surface proteins involved in host-adhesion and variable antigenicity being scaled down. GrTh01 was also deprived of Integrative Conjugative Element or prophage, and had a single IS element, suggesting that GrTh01 has a limited capacity to adapt and evolve. Conclusions The lack of most of the variable antigens and the Integrative Conjugative Element, both major virulence- and host specificity factors of a M. agalactiae strain isolated from an outbreak affecting particularly goats, indicates the implication of these factors in host specificity. Whole genome sequencing and full assembly of bacterial pathogens provides a most valuable tool for epidemiological and virulence studies of M. agalactiae without experimental infections.


2021 ◽  
Vol 7 (10) ◽  
Author(s):  
Ana C. Reis ◽  
Mónica V. Cunha

Animal tuberculosis (TB) is an emergent disease caused by Mycobacterium bovis , one of the animal-adapted ecotypes of the Mycobacterium tuberculosis complex (MTC). In this work, whole-genome comparative analyses of 70 M . bovis were performed to gain insights into the pan-genome architecture. The comparison across M. bovis predicted genome composition enabled clustering into the core- and accessory-genome components, with 2736 CDS for the former, while the accessory moiety included 3897 CDS, of which 2656 are restricted to one/two genomes only. These analyses predicted an open pan-genome architecture, with an average of 32 CDS added by each genome and show the diversification of discrete M. bovis subpopulations supported by both core- and accessory-genome components. The functional annotation of the pan-genome classified each CDS into one or several COG (Clusters of Orthologous Groups) categories, revealing ‘transcription’ (total average CDSs, n=258), ‘lipid metabolism and transport’ (n=242), ‘energy production and conversion’ (n=214) and ‘unknown function’ (n=876) as the most represented. The closer analysis of polymorphisms in virulence-related genes in a restrict group of M. bovis from a multi-host system enabled the identification of clade-monomorphic non-synonymous SNPs, illustrating clade-specific virulence landscapes and correlating with disease severity. This first comparative pan-genome study of a diverse collection of M. bovis encompassing all clonal complexes indicates a high percentage of accessory genes and denotes an open, dynamic non-conservative pan-genome structure, with high evolutionary potential, defying the canons of MTC biology. Furthermore, it shows that M. bovis can shape its virulence repertoire, either by acquisition and loss of genes or by SNP-based diversification, likely towards host immune evasion, adaptation and persistence.


2021 ◽  
Vol 12 ◽  
Author(s):  
Prasad Thomas ◽  
Mostafa Y. Abdel-Glil ◽  
Inga Eichhorn ◽  
Torsten Semmler ◽  
Christiane Werckenthin ◽  
...  

Black quarter caused by Clostridium (C.) chauvoei is an important bacterial disease that affects cattle and sheep with high mortality. A comparative genomics analysis of 64 C. chauvoei strains, most of European origin and a few of non-European and unknown origin, was performed. The pangenome analysis showed limited new gene acquisition for the species. The accessory genome involved prophages and genomic islands, with variations in gene composition observed in a few strains. This limited accessory genome may indicate that the species replicates only in the host or that an active CRISPR/Cas system provides immunity to foreign genetic elements. All strains contained a CRISPR type I-B system and it was confirmed that the unique spacer sequences therein can be used to differentiate strains. Homologous recombination events, which may have contributed to the evolution of this pathogen, were less frequent compared to other related species from the genus. Pangenome single nucleotide polymorphism (SNP) based phylogeny and clustering indicate diverse clusters related to geographical origin. Interestingly the identified SNPs were mostly non-synonymous. The study demonstrates the possibility of the existence of polymorphic populations in one host, based on strain variability observed for strains from the same animal and strains from different animals of one outbreak. The study also demonstrates that new outbreak strains are mostly related to earlier outbreak strains from the same farm/region. This indicates the last common ancestor strain from one farm can be crucial to understand the genetic changes and epidemiology occurring at farm level. Known virulence factors for the species were highly conserved among the strains. Genetic elements involved in Nicotinamide adenine dinucleotide (NAD) precursor synthesis (via nadA, nadB, and nadC metabolic pathway) which are known as potential anti-virulence loci are completely absent in C. chauvoei compared to the partial inactivation in C. septicum. A novel core-genome MLST based typing method was compared to sequence typing based on CRISPR spacers to evaluate the usefulness of the methods for outbreak investigations.


2021 ◽  
Author(s):  
Shaimaa F Mouftah ◽  
Ben Pascoe ◽  
Jessica K Calland ◽  
Evangelos Mourkas ◽  
Naomi Tonkin ◽  
...  

Campylobacter is the most common cause of bacterial gastroenteritis worldwide and diarrheal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries (LMICs). Despite evidence of high incidence and differences in disease epidemiology, there is limited genomic data from studies in developing countries. In this study, we characterized the genetic diversity and accessory genome content of a collection of Campylobacter isolates from Cairo, Egypt. In total, 112 Campylobacter isolates were collected from broiler carcasses (n=31), milk and dairy products (n=24) and patients (n=57) suffering from gastroenteritis. Among the most common sequence types (STs) we identified were the globally disseminated, host generalist ST-21 clonal complex (CC21) and the poultry specialist CC206, CC464 and CC48. Notably, CC45 and the cattle-specialist CC42 were under-represented with a total absence of CC61. Comparative genomics were used to quantify core and accessory genome sharing among isolates from the same country compared to sharing between countries. Lineage-specific accessory genome sharing was significantly higher among isolates from the same country, particularly CC21 which demonstrated greater local geographical clustering. In contrast, no geographic clustering was noted in either the core or accessory genomes of the CC828, suggesting a highly admixed population. A greater proportion of C. coli isolates were multidrug resistant (MDR) compared to C. jejuni. This is a significant public health concern as MDR food chain pathogens are difficult to treat and often pose increased mortality risk demanding enhanced prevention strategies in the Egyptian market to combat such a threat.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Rebecca J. Hall ◽  
Fiona J. Whelan ◽  
Elizabeth A. Cummins ◽  
Christopher Connor ◽  
Alan McNally ◽  
...  

The pangenome contains all genes encoded by a species, with the core genome present in all strains and the accessory genome in only a subset. Coincident gene relationships are expected within the accessory genome, where the presence or absence of one gene is influenced by the presence or absence of another. Here, we analysed the accessory genome of an Escherichia coli pangenome consisting of 400 genomes from 20 sequence types to identify genes that display significant co-occurrence or avoidance patterns with one another. We present a complex network of genes that are either found together or that avoid one another more often than would be expected by chance, and show that these relationships vary by lineage. We demonstrate that genes co-occur by function, and that several highly connected gene relationships are linked to mobile genetic elements. We find that genes are more likely to co-occur with, rather than avoid, another gene in the accessory genome. This work furthers our understanding of the dynamic nature of prokaryote pangenomes and implicates both function and mobility as drivers of gene relationships.


2021 ◽  
Author(s):  
Luis F. Espinosa-Camacho ◽  
Gabriela Delgado ◽  
Alejandro Cravioto ◽  
Rosario Morales-Espinosa

2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Madikay Senghore ◽  
Peggy-Estelle Tientcheu ◽  
Archibald Kwame Worwui ◽  
Sheikh Jarju ◽  
Catherine Okoi ◽  
...  

Despite contributing to the large disease burden in West Africa, little is known about the genomic epidemiology of Streptococcus pneumoniae which cause meningitis among children under 5 years old in the region. We analysed whole-genome sequencing data from 185  S . pneumoniae isolates recovered from suspected paediatric meningitis cases as part of the World Health Organization (WHO) invasive bacterial diseases surveillance from 2010 to 2016. The phylogeny was reconstructed, accessory genome similarity was computed and antimicrobial-resistance patterns were inferred from the genome data and compared to phenotypic resistance from disc diffusion. We studied the changes in the distribution of serotypes pre- and post-pneumococcal conjugate vaccine (PCV) introduction in the Central and Western sub-regions separately. The overall distribution of non-vaccine, PCV7 (4, 6B, 9V, 14, 18C, 19F and 23F) and additional PCV13 serotypes (1, 3, 5, 6A, 19A and 7F) did not change significantly before and after PCV introduction in the Central region (Fisher's test P value 0.27) despite an increase in the proportion of non-vaccine serotypes to 40 % (n=6) in the post-PCV introduction period compared to 21.9 % (n=14). In the Western sub-region, PCV13 serotypes were more dominant among isolates from The Gambia following the introduction of PCV7, 81 % (n=17), compared to the pre-PCV period in neighbouring Senegal, 51 % (n=27). The phylogeny illustrated the diversity of strains associated with paediatric meningitis in West Africa and highlighted the existence of phylogeographical clustering, with isolates from the same sub-region clustering and sharing similar accessory genome content. Antibiotic-resistance genotypes known to confer resistance to penicillin, chloramphenicol, co-trimoxazole and tetracycline were detected across all sub-regions. However, there was no discernible trend linking the presence of resistance genotypes with the vaccine introduction period or whether the strain was a vaccine or non-vaccine serotype. Resistance genotypes appeared to be conserved within selected sub-clades of the phylogenetic tree, suggesting clonal inheritance. Our data underscore the need for continued surveillance on the emergence of non-vaccine serotypes as well as chloramphenicol and penicillin resistance, as these antibiotics are likely still being used for empirical treatment in low-resource settings. This article contains data hosted by Microreact.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Rebecca J. Bengtsson ◽  
Timothy J. Dallman ◽  
Hester Allen ◽  
P. Malaka De Silva ◽  
George Stenhouse ◽  
...  

ABSTRACT Shigellosis is a diarrheal disease caused mainly by Shigella flexneri and Shigella sonnei. Infection is thought to be largely self-limiting, with short- to medium-term and serotype-specific immunity provided following clearance. However, cases of men who have sex with men (MSM)-associated shigellosis have been reported where Shigella of the same serotype were serially sampled from individuals between 1 and 1,862 days apart, possibly due to persistent carriage or reinfection with the same serotype. Here, we investigate the accessory genome dynamics of MSM-associated S. flexneri and S. sonnei isolates serially sampled from individual patients at various days apart to shed light on the adaptation of these important pathogens during infection. We find that pairs likely associated with persistent infection/carriage and with a smaller single nucleotide polymorphism (SNP) distance, demonstrated significantly less variation in accessory genome content than pairs likely associated with reinfection, and with a greater SNP distance. We observed antimicrobial resistance acquisition during Shigella carriage, including the gain of an extended-spectrum beta-lactamase gene during carriage. Finally, we explored large chromosomal structural variations and rearrangements in seven (five chronic and two reinfection associated) pairs of S. flexneri 3a isolates from an MSM-associated epidemic sublineage, which revealed variations at several common regions across isolate pairs, mediated by insertion sequence elements and comprising a distinct predicted functional profile. This study provides insight on the variation of accessory genome dynamics and large structural genomic changes in Shigella during persistent infection/carriage. In addition, we have also created a complete reference genome and biobanked isolate of the globally important pathogen, S. flexneri 3a. IMPORTANCE Shigella spp. are Gram-negative bacteria that are the etiological agent of shigellosis, the second most common cause of diarrheal illness among children under the age of five in low-income countries. In high-income countries, shigellosis is also a sexually transmissible disease among men who have sex with men. Within the latter setting, we have captured prolonged and/or recurrent infection with shigellae of the same serotype, challenging the belief that Shigella infection is short lived and providing an early opportunity to study the evolution of the pathogen over the course of infection. Using this recently emerged transmission scenario, we comprehensively characterize the genomic changes that occur over the course of individual infection with Shigella and uncover a distinct functional profile of variable genomic regions, findings that have relevance for other Enterobacteriaceae.


2021 ◽  
Author(s):  
Valeria Mateo-Estrada ◽  
Jose Luis Fernandez-Vazquez ◽  
Julia Moreno ◽  
Ismael Hernandez-Gonzalez ◽  
Eduardo Rodriguez-Noriega ◽  
...  

A. baumannii has become one of the most important multidrug resistant nosocomial pathogens all over the world. Nonetheless, very little is known about the diversity of A. baumannii lineages co-existing in hospital settings. Here, using whole-genome sequencing, epidemiological data and antimicrobial susceptibility tests, we uncover the transmission dynamics of extensive and multidrug resistant A. baumannii in a tertiary hospital for a decade. Our core genome phylogeny of almost 300 genomes suggests that there were several introductions of lineages from international clone 2 into the hospital. The molecular dating analysis shows that these introductions happened between 2004 and 2015. Furthermore, using the accessory genome, we show that these lineages were extensively disseminated across many wards in the hospital. Our results demonstrate that accessory genome variation can be a very powerful tool for conducting genomic epidemiology. We anticipate future studies employing the accessory genome as a phylogenomic marker over very short microevolutionary scales.


Sign in / Sign up

Export Citation Format

Share Document