scholarly journals Isotropic Three-Dimensional Dual-Color Super-Resolution Microscopy with Metal-Induced Energy Transfer

2021 ◽  
Author(s):  
Jan Christoph Thiele ◽  
Marvin Jungblut ◽  
Dominic A. Helmerich ◽  
Roman Tsukanov ◽  
Anna Chizhik ◽  
...  

Over the last two decades, super-resolution microscopy has seen a tremendous development in speed and resolution, but for most of its methods, there exists a remarkable gap between lateral and axial resolution. Similar to conventional optical microscopy, the axial resolution is by a factor three to five worse than the lateral resolution. One recently developed method to close this gap is metal-induced energy transfer (MIET) imaging which achieves an axial resolution down to nanometers. It exploits the distance dependent quenching of fluorescence when a fluorescent molecule is brought close to a metal surface. In the present manuscript, we combine the extreme axial resolution of MIET imaging with the extraordinary lateral resolution of single-molecule localization microscopy, in particular with direct stochastic optical reconstruction microscopy (dSTORM). This combination allows us to achieve isotropic three-dimensional super-resolution imaging of sub-cellular structures. Moreover, we employed spectral demixing for implementing dual-color MIET-dSTORM that allows us to image and co-localize, in three dimensions, two different cellular structures simultaneously.

2021 ◽  
pp. 2101099
Author(s):  
Izabela Kamińska ◽  
Johann Bohlen ◽  
Renukka Yaadav ◽  
Patrick Schüler ◽  
Mario Raab ◽  
...  

2021 ◽  
Vol 33 (42) ◽  
pp. 2105719
Author(s):  
Izabela Kamińska ◽  
Johann Bohlen ◽  
Renukka Yaadav ◽  
Patrick Schüler ◽  
Mario Raab ◽  
...  

2014 ◽  
Vol 104 (19) ◽  
pp. 193701 ◽  
Author(s):  
Adam S. Backer ◽  
Mikael P. Backlund ◽  
Alexander R. von Diezmann ◽  
Steffen J. Sahl ◽  
W. E. Moerner

2021 ◽  
Vol 13 ◽  
Author(s):  
Gabriella Gagliano ◽  
Tyler Nelson ◽  
Nahima Saliba ◽  
Sofía Vargas-Hernández ◽  
Anna-Karin Gustavsson

The function of the neuronal synapse depends on the dynamics and interactions of individual molecules at the nanoscale. With the development of single-molecule super-resolution microscopy over the last decades, researchers now have a powerful and versatile imaging tool for mapping the molecular mechanisms behind the biological function. However, imaging of thicker samples, such as mammalian cells and tissue, in all three dimensions is still challenging due to increased fluorescence background and imaging volumes. The combination of single-molecule imaging with light sheet illumination is an emerging approach that allows for imaging of biological samples with reduced fluorescence background, photobleaching, and photodamage. In this review, we first present a brief overview of light sheet illumination and previous super-resolution techniques used for imaging of neurons and synapses. We then provide an in-depth technical review of the fundamental concepts and the current state of the art in the fields of three-dimensional single-molecule tracking and super-resolution imaging with light sheet illumination. We review how light sheet illumination can improve single-molecule tracking and super-resolution imaging in individual neurons and synapses, and we discuss emerging perspectives and new innovations that have the potential to enable and improve single-molecule imaging in brain tissue.


Science ◽  
2018 ◽  
Vol 361 (6405) ◽  
pp. 880-887 ◽  
Author(s):  
Yaron M. Sigal ◽  
Ruobo Zhou ◽  
Xiaowei Zhuang

Super-resolution microscopy has overcome a long-held resolution barrier—the diffraction limit—in light microscopy and enabled visualization of previously invisible molecular details in biological systems. Since their conception, super-resolution imaging methods have continually evolved and can now be used to image cellular structures in three dimensions, multiple colors, and living systems with nanometer-scale resolution. These methods have been applied to answer questions involving the organization, interaction, stoichiometry, and dynamics of individual molecular building blocks and their integration into functional machineries in cells and tissues. In this Review, we provide an overview of super-resolution methods, their state-of-the-art capabilities, and their constantly expanding applications to biology, with a focus on the latter. We will also describe the current technical challenges and future advances anticipated in super-resolution imaging.


Author(s):  
Sreejesh Sreedharan ◽  
Rajeshwari Tiwari ◽  
Deepak Tyde ◽  
Stephen O. Aderinto ◽  
Sumit Kumar Pramanik ◽  
...  

Super-resolution microscopy (SRM) has revolutionized cell biology, enabling visualization of cellular structures with nanometric resolution, single-molecule sensitivity, and with multiple colors. Here we review how nanocontainers have been used to enhance these techniques.


2019 ◽  
Author(s):  
Sevim Yardimci ◽  
Daniel R. Burnham ◽  
Samantha Y. A. Terry ◽  
Hasan Yardimci

AbstractRecent advances in fluorescence super-resolution microscopy are providing important insights into details of cellular structures. To acquire three dimensional (3D) super-resolution images of DNA, we combined binding activated localization microscopy (BALM) using fluorescent double-stranded DNA intercalators and optical astigmatism. We quantitatively establish the advantage of mono-over bis-intercalators before demonstrating the approach by visualizing single DNA molecules stretched between microspheres at various heights. Finally, the approach is applied to the more complex environment of intact and damaged metaphase chromosomes, unravelling their structural features.


2020 ◽  
Author(s):  
Simon Hennig ◽  
Dietmar J. Manstein

ABSTRACTSuper-resolution fluorescence imaging provides critically improved information about the composition, organization and dynamics of sub-cellular structures. Quantum-Dot-Triexciton Imaging (QDTI) has been introduced as an easy-to-use sub-diffraction imaging method that achieves an almost 2-fold improvement in resolution when used with conventional confocal microscopes. Here we report an overall 3-fold increase in lateral and axial resolution compared to standard confocal microscopes by combining QDTI with the Airyscan approach.


2020 ◽  
Vol 22 (1) ◽  
pp. 155-184 ◽  
Author(s):  
Sheng Liu ◽  
Hyun Huh ◽  
Sang-Hyuk Lee ◽  
Fang Huang

Super-resolution microscopy techniques are versatile and powerful tools for visualizing organelle structures, interactions, and protein functions in biomedical research. However, whole-cell and tissue specimens challenge the achievable resolution and depth of nanoscopy methods. We focus on three-dimensional single-molecule localization microscopy and review some of the major roadblocks and developing solutions to resolving thick volumes of cells and tissues at the nanoscale in three dimensions. These challenges include background fluorescence, system- and sample-induced aberrations, and information carried by photons, as well as drift correction, volume reconstruction, and photobleaching mitigation. We also highlight examples of innovations that have demonstrated significant breakthroughs in addressing the abovementioned challenges together with their core concepts as well as their trade-offs.


Sign in / Sign up

Export Citation Format

Share Document