Multi-Pathway DNA Double-Strand Break Repair Reporters Reveal Extensive Cross-Talk Between End-Joining, Single Strand Annealing, and Homologous Recombination

2021 ◽  
Author(s):  
Bert van de Kooij ◽  
Alex Kruswick ◽  
Haico van Attikum ◽  
Michael B. Yaffe

DNA double-strand breaks (DSB) are repaired by multiple distinct pathways, with outcomes ranging from error-free repair to extensive mutagenesis and genomic loss. Repair pathway cross-talk and compensation within the DSB-repair network is incompletely understood, despite its importance for genomic stability, oncogenesis, and the outcome of genome editing by CRISPR/Cas9. To address this, we constructed and validated three fluorescent Cas9-based reporters, named DSB-Spectrum, that simultaneously quantify the contribution of multiple distinct pathways to repair of a DSB. These reporters distinguish between DSB-repair by error-free canonical non-homologous end-joining (c-NHEJ) versus homologous recombination (HR; reporter 1), mutagenic repair versus HR (reporter 2), and mutagenic end-joining versus single strand annealing (SSA) versus HR (reporter 3). Using these reporters, we show that inhibition of the essential c-NHEJ factor DNA-PKcs not only increases repair by HR, but also results in a substantial increase in mutagenic repair by SSA. We show that SSA-mediated repair of Cas9-generated DSBs can occur between Alu elements at endogenous genomic loci, and is enhanced by inhibition of DNA-PKcs. Finally, we demonstrate that the short-range end-resection factors CtIP and Mre11 promote both SSA and HR, whereas the long-range end-resection factors DNA2 and Exo1 promote SSA, but reduce HR, when both pathways compete for the same substrate. These new Cas9-based DSB-Spectrum reporters facilitate the rapid and comprehensive analysis of repair pathway crosstalk and DSB-repair outcome.

Open Biology ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 160225 ◽  
Author(s):  
Sylvie Moureau ◽  
Janna Luessing ◽  
Emma Christina Harte ◽  
Muriel Voisin ◽  
Noel Francis Lowndes

Loss of p53, a transcription factor activated by cellular stress, is a frequent event in cancer. The role of p53 in tumour suppression is largely attributed to cell fate decisions. Here, we provide evidence supporting a novel role for p53 in the regulation of DNA double-strand break (DSB) repair pathway choice. 53BP1, another tumour suppressor, was initially identified as p53 Binding Protein 1, and has been shown to inhibit DNA end resection, thereby stimulating non-homologous end joining (NHEJ). Yet another tumour suppressor, BRCA1, reciprocally promotes end resection and homologous recombination (HR). Here, we show that in both human and mouse cells, the absence of p53 results in impaired 53BP1 focal recruitment to sites of DNA damage induced by ionizing radiation. This effect is largely independent of cell cycle phase and the extent of DNA damage. In p53-deficient cells, diminished localization of 53BP1 is accompanied by a reciprocal increase in BRCA1 recruitment to DSBs. Consistent with these findings, we demonstrate that DSB repair via NHEJ is abrogated, while repair via homology-directed repair (HDR) is stimulated. Overall, we propose that in addition to its role as an ‘effector’ protein in the DNA damage response, p53 plays a role in the regulation of DSB repair pathway choice.


2015 ◽  
Vol 197 (19) ◽  
pp. 3121-3132 ◽  
Author(s):  
Richa Gupta ◽  
Stewart Shuman ◽  
Michael S. Glickman

ABSTRACTMycobacteria encode three DNA double-strand break repair pathways: (i) RecA-dependent homologous recombination (HR), (ii) Ku-dependent nonhomologous end joining (NHEJ), and (iii) RecBCD-dependent single-strand annealing (SSA). Mycobacterial HR has two presynaptic pathway options that rely on the helicase-nuclease AdnAB and the strand annealing protein RecO, respectively. Ablation ofadnABorrecOindividually causes partial impairment of HR, but loss ofadnABandrecOin combination abolishes HR. RecO, which can accelerate annealing of single-stranded DNAin vitro, also participates in the SSA pathway. The functions of RecF and RecR, which, in other model bacteria, function in concert with RecO as mediators of RecA loading, have not been examined in mycobacteria. Here, we present a genetic analysis ofrecFandrecRin mycobacterial recombination. We find that RecF, like RecO, participates in the AdnAB-independent arm of the HR pathway and in SSA. In contrast, RecR is required for all HR in mycobacteria and for SSA. The essentiality of RecR as an agent of HR is yet another distinctive feature of mycobacterial DNA repair.IMPORTANCEThis study clarifies the molecular requirements for homologous recombination in mycobacteria. Specifically, we demonstrate that RecF and RecR play important roles in both the RecA-dependent homologous recombination and RecA-independent single-strand annealing pathways. Coupled with our previous findings (R. Gupta, M. Ryzhikov, O. Koroleva, M. Unciuleac, S. Shuman, S. Korolev, and M. S. Glickman, Nucleic Acids Res 41:2284–2295, 2013,http://dx.doi.org/10.1093/nar/gks1298), these results revise our view of mycobacterial recombination and place the RecFOR system in a central position in homology-dependent DNA repair.


2018 ◽  
Vol 115 (35) ◽  
pp. E8286-E8295 ◽  
Author(s):  
Liwei An ◽  
Chao Dong ◽  
Junshi Li ◽  
Jie Chen ◽  
Jingsong Yuan ◽  
...  

Unrestrained 53BP1 activity at DNA double-strand breaks (DSBs) hampers DNA end resection and upsets DSB repair pathway choice. RNF169 acts as a molecular rheostat to limit 53BP1 deposition at DSBs, but how this fine balance translates to DSB repair control remains undefined. In striking contrast to 53BP1, ChIP analyses of AsiSI-induced DSBs unveiled that RNF169 exhibits robust accumulation at DNA end-proximal regions and preferentially targets resected, RPA-bound DSBs. Accordingly, we found that RNF169 promotes CtIP-dependent DSB resection and favors homology-mediated DSB repair, and further showed that RNF169 dose-dependently stimulates single-strand annealing repair, in part, by alleviating the 53BP1-imposed barrier to DSB end resection. Our results highlight the interplay of RNF169 with 53BP1 in fine-tuning choice of DSB repair pathways.


2020 ◽  
Vol 98 (1) ◽  
pp. 42-49 ◽  
Author(s):  
David Dilworth ◽  
Fade Gong ◽  
Kyle Miller ◽  
Christopher J. Nelson

FK506-binding proteins (FKBPs) alter the conformation of proteins via cis–trans isomerization of prolyl-peptide bonds. While this activity can be demonstrated in vitro, the intractability of detecting prolyl isomerization events in cells has limited our understanding of the biological processes regulated by FKBPs. Here we report that FKBP25 is an active participant in the repair of DNA double-strand breaks (DSBs). FKBP25 influences DSB repair pathway choice by promoting homologous recombination (HR) and suppressing single-strand annealing (SSA). Consistent with this observation, cells depleted of FKBP25 form fewer Rad51 repair foci in response to etoposide and ionizing radiation, and they are reliant on the SSA repair factor Rad52 for viability. We find that FKBP25’s catalytic activity is required for promoting DNA repair, which is the first description of a biological function for this enzyme activity. Consistent with the importance of the FKBP catalytic site in HR, rapamycin treatment also impairs homologous recombination, and this effect is at least in part independent of mTor. Taken together these results identify FKBP25 as a component of the DNA DSB repair pathway.


2005 ◽  
Vol 171 (2) ◽  
pp. 217-227 ◽  
Author(s):  
Hong Yan ◽  
Jill McCane ◽  
Thomas Toczylowski ◽  
Chinyi Chen

Werner syndrome is associated with premature aging and increased risk of cancer. Werner syndrome protein (WRN) is a RecQ-type DNA helicase, which seems to participate in DNA replication, double-strand break (DSB) repair, and telomere maintenance; however, its exact function remains elusive. Using Xenopus egg extracts as the model system, we found that Xenopus WRN (xWRN) is recruited to discrete foci upon induction of DSBs. Depletion of xWRN has no significant effect on nonhomologous end-joining of DSB ends, but it causes a significant reduction in the homology-dependent single-strand annealing DSB repair pathway. These results provide the first direct biochemical evidence that links WRN to a specific DSB repair pathway. The assay for single-strand annealing that was developed in this study also provides a powerful biochemical system for mechanistic analysis of homology-dependent DSB repair.


2019 ◽  
Author(s):  
Ανδρέας Παναγόπουλος

Η γονιδιωματική σταθερότητα διατηρείται μέσω του συντονισμού μεταξύ των μηχανισμών του φυσιολογικού κυτταρικού κύκλου και των μηχανισμών απόκρισης σε βλάβη στο γενετικό υλικό. Οι παράγοντες που διαδραματίζουν κομβικό ρόλο στη διασύνδεση των συγκεκριμένων μηχανισμών καθίστανται ιδιαίτερα σημαντικοί. Χαρακτηριστικά παραδείγματα αποτελούν τα Cdt1 και Cdc6 που συμβάλλουν στην αδειοδότηση της αντιγραφής του γενετικού υλικού. Μάλιστα, οι εν λόγω παράγοντες διαδραματίζουν κομβικό ρόλο στον καρκίνο όπου η υπερέκφρασή τους οδηγεί σε γονιδιωματική αστάθεια και επικράτηση κυττάρων με ογκογονικές ιδιότητες. Επιπρόσθετα, η σημαντικότητα τους υποδεικνύεται και από το γεγονός πως ένα ευρύ φάσμα μηχανισμών είναι υπεύθυνο για τη ρύθμισή τους τόσο κατά το φυσιολογικό κυτταρικό κύκλο όσο και μετά από βλάβη στο γενετικό υλικό.Η περιοδική πρωτεόλυση πρωτεϊνών είναι ιδιαίτερα σημαντική για τη διατήρηση της κυτταρικής φυσιολογίας. Η διαδικασία της πρωτεόλυσης πραγματοποιείται μέσω της πρόσδεσης αλυσίδων ουβικουϊτίνης στις πρωτεΐνες-υποστρώματα, οι οποίες στη συνέχεια καθίστανται στόχοι αποικοδόμησης από το πρωτεάσωμα. Η λιγάση της ουβικουϊτίνης CRL4Cdt2 αποτελεί ένα σύμπλοκο υπεύθυνο για την ουβικουϊτινιλίωση μεγάλου αριθμού μορίων που συμβάλλουν στην πρόοδο του κυτταρικού κύκλου. Η ρύθμιση μέσω αυτού του συμπλόκου πραγματοποιείται μέσω της πρόσδεσης του υποστρώματος στο PCNA που βρίσκεται στο DNA. Το CRL4Cdt2 είναι ενεργό κατά τη διάρκεια της S φάσης και μετά από βλάβη στο γενετικό υλικό. Παρά το γεγονός πως η εν λόγω λιγάση της ουβικουϊτίνης αποτελεί έναν κεντρικό ρυθμιστή της γονιδιωματικής σταθερότητας εντούτοις ο μοριακός μηχανισμός αναγνώρισης υποστρώματος δεν είχε διαλευκανθεί πλήρως. Το μέχρι πρόσφατα επικρατές μοντέλο όριζε πως το CRL4Cdt2 στρατολογείται στη χρωματίνη αφού πρώτα έχει σχηματιστεί το σύμπλοκο PCNA-υπόστρωμα. Ερευνητικά δεδομένα από διάφορες ομάδες υποδείκνυαν ένα διαφορετικό μηχανισμό σε σχέση με το συγκεκριμένο μοντέλο. Στην παρούσα διατριβή, με τη χρήση μεταλλαγμάτων του υποδοχέα υποστρώματος της λιγάσης, Cdt2 και ακτινοβολίας UV-C καταφέραμε να διαπιστώσουμε πως η συσσώρευση στην περιοχή της βλάβης πραγματοποιείται μέσω του καρβοξυ-τελικού τμήματος της πρωτεΐνης και συγκεκριμένα μέσω μοτίβου PIP-box που εδράζεται στο καρβόξυ-τελικό άκρο. Τα συγκεκριμένα δεδομένα οδήγησαν στην περιγραφή ενός νέου μοντέλου για το μηχανισμό αναγνώρισης υποστρώματος όπου η λιγάση και το υπόστρωμα συσσωρεύονται ανεξάρτητα στο PCNA. Στη συνέχεια ακολουθεί η αναγνώριση και η ουβικουϊτινιλίωση του υποστρώματος το οποίο στοχεύεται για πρωτεόλυση.Οι διπλές θραύσεις στο γενετικό υλικό είναι μία από τις πιο επιζήμιες βλάβες και μπορούν να προκληθούν από ενδογενείς διεργασίες ή εξωγενείς παράγοντες. Αν δεν επιδιορθωθούν ή επιδιορθωθούν με λανθασμένο τρόπο μπορεί να προκαλέσουν γονιδιωματική αστάθεια. Οι κύριοι επιδιορθωτικοί μηχανισμοί που έχουν αναπτυχθεί προκειμένου να αντιμετωπιστούν οι εν λόγω βλάβες είναι η Μη-Ομόλογη Σύνδεση των Άκρων (Non-Homologous End Joining, NHEJ) που λειτουργεί καθ' όλη τη διάρκεια του κυτταρικού κύκλου και είναι επιρρεπής σε λάθη και ο Ομόλογος Ανασυνδυασμός (Homologous Recombination, HR) που λειτουργεί μόνο κατά τις S και G2 φάσεις του κυτταρικού κύκλου και επιδιορθώνει τις διπλές θραύσεις με υψηλή πιστότητα. Όταν οι συγκεκριμένοι μηχανισμοί παρουσιάζουν αδυναμία επιδιόρθωσης των βλαβών στο γενετικό υλικό τότε η επιδιόρθωση επαφίεται στους εναλλακτικούς επιδιορθωτικούς μηχανισμούς που περιλαμβάνουν την Εναλλακτική Σύνδεση των Άκρων (Alternative Non-Homologous End Joining, A-NHEJ) με κύριο υπομονοπάτι τη Σύνδεση των Άκρων ρυθμιζόμενη από Μικρο-ομολογία (Microhomology Mediated End Joining, MMEJ), τη Σύνδεση Μονού Κλώνου (Single Strand Annealing, SSA) και την Επιδιόρθωση Αντιγραφής Επαγόμενης από Θραύση (Break Induced Replication, BIR). Τα συγκεκριμένα επιδιορθωτικά μονοπάτια αν και βελτιώνουν τις πιθανότητες ενός κυττάρου για επιβίωση μετά από βλάβη εντούτοις παρουσιάζονται ιδιαίτερα επιρρεπή σε λάθη. Προηγούμενα ερευνητικά δεδομένα του εργαστηρίου υπέδειξαν την ταχύτατη συσσώρευση του Cdt1 στην περιοχή της εντοπισμένης βλάβης από UV-A παλμικό laser. Στην παρούσα διατριβή πραγματοποιήθηκε εκτεταμένη μελέτη της πιθανής εμπλοκής του Cdt1 στην επιδιόρθωση των διπλών θραύσεων. Τα ερευνητικά δεδομένα από πειράματα με κυτταρικά συστήματα αναφοράς φθορισμού υποδεικνύουν πως ο συγκεκριμένος παράγοντας συμμετέχει στα βασικά μονοπάτια επιδιόρθωσης NHEJ, HR καθώς και στα εναλλακτικά μονοπάτια SSA και BIR. Πειράματα που πραγματοποιήθηκαν με ετοποσίδιο, neocarzinostatin και ακτίνες Χ προκειμένου να διαλευκανθεί το ακριβές σημείο εμπλοκής του Cdt1 στα μονοπάτια επιδιόρθωσης των διπλών θραύσεων δεν οδήγησαν σε κάποιο ξεκάθαρο συμπέρασμα.Στην παρούσα διατριβή διαπιστώθηκε για πρώτη φορά πως ο αδειοδοτικός παράγοντας Cdc6 διαδραματίζει σημαντικό ρόλο στην επιδιόρθωση των διπλών θραύσεων στο γενετικό υλικό. Συγκεκριμένα με τη χρήση UV-A παλμικού laser διαπιστώθηκε πως το Cdc6 συσσωρεύεται ταχύτατα στην περιοχή της εντοπισμένης βλάβης. Πειράματα με ετοποσίδιο και neocarzinostatin καθώς και με κυτταρικά συστήματα αναφοράς φθορισμού υπέδειξαν πως το Cdc6 εμπλέκεται στο μονοπάτι NHEJ και συγκεκριμένα στα αρχικά στάδια κατά τη συσσώρευση των παραγόντων 53BP1 και RIF1 στα σημεία της βλάβης. Στον αντίποδα η συσσώρευση στα σημεία βλάβης των παραγόντων του μονοπατιού HR, pRPA και Rad51 δεν επηρεάζεται από το Cdc6. Τα συγκεκριμένα πειράματα υπέδειξαν επίσης πως το Cdc6 εμπλέκεται στην ενεργοποίηση της κινάσης ATM χωρίς ωστόσο να επηρεάζει τη φωσφορυλίωση της ιστόνης H2AX. Τέλος, στην παρούσα διατριβή διαπιστώθηκε πως η απουσία του Cdc6 οδηγεί σε ευαισθητοποίηση των καρκινικών κυττάρων σε επώαση με γενοτοξικούς παράγοντες, γεγονός που υποδεικνύει πως η εμπλοκή του Cdc6 στα μονοπάτια απόκρισης στη βλάβη είναι σημαντική για την επιβίωση των κυττάρων. Παράλληλα, υποδεικνύει πως η αποσιώπηση του Cdc6 μπορεί να χρησιμοποιηθεί σε θεραπευτικές προσεγγίσεις για την καταπολέμηση του καρκίνου.


2019 ◽  
Vol 51 (9) ◽  
pp. 879-889 ◽  
Author(s):  
Jinbao Li ◽  
Huize Sun ◽  
Yulin Huang ◽  
Yali Wang ◽  
Yuyan Liu ◽  
...  

AbstractDouble strand breaks (DSBs) are the most detrimental type of DNA damage that must be repaired to ensure genome integrity and cell survival. Unrepaired or improperly repaired DSBs can potentially cause tumorigenesis or cell death. DSBs are primarily repaired by non-homologous end joining or homologous recombination (HR). The HR pathway is initiated by processing of the 5′-end of DSBs to generate 3′-end single-strand DNA (ssDNA). Furthermore, the intermediate is channeled to one of the HR sub-pathways, including: (i) double Holliday junction (dHJ) pathway, (ii) synthesis-dependent strand annealing (SDSA), (iii) break-induced replication (BIR), and (iv) single-strand annealing (SSA). In the dHJ sub-pathway, the 3′-ssDNA coated with Rad51 recombinase performs homology search and strand invasion, forming a displacement loop (D-loop). Capture of the second end by the D-loop generates a dHJ intermediate that is subsequently dissolved by DNA helicase or resolved by nucleases, producing non-crossover or crossover products. In SDSA, the newly synthesized strand is displaced from the D-loop and anneals to the end on the other side of the DSBs, producing non-crossovers. In contrast, BIR repairs one-end DSBs by copying the sequence up to the end of the template chromosome, resulting in translocation or loss of heterozygosity. SSA takes place when resection reveals flanking homologous repeats that can anneal, leading to deletion of the intervening sequences. A variety of reporter assays have been developed to monitor distinct HR sub-pathways in both Saccharomyces cerevisiae and mammals. Here, we summarize the principles and representative assays for different HR sub-pathways with an emphasis on the studies in the budding yeast.


1999 ◽  
Vol 19 (12) ◽  
pp. 8353-8360 ◽  
Author(s):  
Yunfu Lin ◽  
Tamas Lukacsovich ◽  
Alan S. Waldman

ABSTRACT To study repair of DNA double-strand breaks (DSBs) in mammalian chromosomes, we designed DNA substrates containing a thymidine kinase (TK) gene disrupted by the 18-bp recognition site for yeast endonuclease I-SceI. Some substrates also contained a second defective TK gene sequence to serve as a genetic donor in recombinational repair. A genomic DSB was induced by introducing endonuclease I-SceI into cells containing a stably integrated DNA substrate. DSB repair was monitored by selection for TK-positive segregants. We observed that intrachromosomal DSB repair is accomplished with nearly equal efficiencies in either the presence or absence of a homologous donor sequence. DSB repair is achieved by nonhomologous end-joining or homologous recombination, but rarely by nonconservative single-strand annealing. Repair of a chromosomal DSB by homologous recombination occurs mainly by gene conversion and appears to require a donor sequence greater than a few hundred base pairs in length. Nonhomologous end-joining events typically involve loss of very few nucleotides, and some events are associated with gene amplification at the repaired locus. Additional studies revealed that precise religation of DNA ends with no other concomitant sequence alteration is a viable mode for repair of DSBs in a mammalian genome.


Sign in / Sign up

Export Citation Format

Share Document