scholarly journals ROOT PENETRATION INDEX 3, a major quantitative trait locus (QTL) associated with root system penetrability in Arabidopsis.

2021 ◽  
Author(s):  
Elohim Bello Bello ◽  
Thelma Y. Rico Cambron ◽  
Ruben Rellan Alvarez ◽  
Luis Rafael Herrera-Estrella

Soil mechanical impedance precludes root penetration, confining root system development to shallow soil horizons where mobile nutrients are scarce. Using a two-phase-agar system, we characterized Arabidopsis thaliana responses to low and high mechanical impedance at three root penetration stages. We found that seedlings whose roots fail to penetrate agar barriers show drastic changes in shoot and root morphology, while those capable of penetrating have only minor morphological effects. The assessment of 21 Arabidopsis accessions revealed that primary root penetrability (PRP) varies widely among accessions. To search for quantitative trait loci (QTLs) associated to root system penetrability, we evaluated a recombinant inbred population (RIL) derived from Landsberg erecta (Ler-0, with a high PRP) and Shahdara (Sha, with a low PRP) accessions. QTL analysis revealed a major-effect QTL localized in chromosome 3 (q-RPI3), which accounted for 29.98% (LOD = 8.82) of the total phenotypic variation. Employing an introgression line (IL-321), with a homozygous q-RPI3 region from Sha in the Ler-0 genetic background, we demonstrated that q-RPI3 plays a crucial role in root penetrability. This multiscale study revels new insights into root plasticity during the penetration process in hard agar layers, natural variation and genetic architecture behind primary root penetrability in Arabidopsis.

2022 ◽  
Vol 23 (2) ◽  
pp. 825
Author(s):  
Federica Della Rovere ◽  
Diego Piacentini ◽  
Laura Fattorini ◽  
Nicoletta Girardi ◽  
Dario Bellanima ◽  
...  

The heavy metal cadmium (Cd) affects root system development and quiescent center (QC)-definition in Arabidopsis root-apices. The brassinosteroids-(BRs)-mediated tolerance to heavy metals has been reported to occur by a modulation of nitric oxide (NO) and root auxin-localization. However, how BRs counteract Cd-action in different root types is unknown. This research aimed to find correlations between BRs and NO in response to Cd in Arabidopsis’s root system, monitoring their effects on QC-definition and auxin localization in root-apices. To this aim, root system developmental changes induced by low levels of 24-epibrassinolide (eBL) or by the BR-biosynthesis inhibitor brassinazole (Brz), combined or not with CdSO4, and/or with the NO-donor nitroprusside (SNP), were investigated using morpho-anatomical and NO-epifluorescence analyses, and monitoring auxin-localization by the DR5::GUS system. Results show that eBL, alone or combined with Cd, enhances lateral (LR) and adventitious (AR) root formation and counteracts QC-disruption and auxin-delocalization caused by Cd in primary root/LR/AR apices. Exogenous NO enhances LR and AR formation in Cd-presence, without synergism with eBL. The NO-signal is positively affected by eBL, but not in Cd-presence, and BR-biosynthesis inhibition does not change the low NO-signal caused by Cd. Collectively, results show that BRs ameliorate Cd-effects on all root types acting independently from NO.


1996 ◽  
Vol 65 (2) ◽  
pp. 303-308 ◽  
Author(s):  
Yasuhiro IZUMI ◽  
Yasuhiro KONO ◽  
Akira YAMAUCHI ◽  
Morio IIJIMA

Author(s):  
S. Acikbas ◽  
M.A. Ozyazici ◽  
H. Bektas

Background: Plants face different abiotic stresses such as salinity that affect their normal development, growth and survival. Forage pea is an important legume crop for herbage production in ruminants. Its agronomy requires high levels of irrigation and fertilization. This study aimed to evaluate the effect of salinity on seedling root system development in forage pea under semi-hydroponics conditions.Methods: Different treatment of NaCl doses (0, 50, 100, 150, 200, 250 and 300 mM) on root architecture was investigated in two different forage pea cultivars (Livioletta and Ulubatlý) with contrasting root structures under controlled conditions. The experimental design was completely randomized design with three replications and nine plants per replication.Result: Salinity affects root and shoot development differently on these cultivars. Despite the salinity, Livioletta produced more shoot (0.71 g) and root biomass (0.30 g) compared to Ulubatlý (0.52 g and 0.25 g for Root and Shoot biomass, respectively) at 150 mM and all other salinity levels. Livioletta developed a better root system and tolerated salt to a higher dose than Ulubatlý. Understanding root system responses of forage pea cultivars may allow breeding and selecting salinity tolerant cultivars with better rooting potential.


2020 ◽  
Vol 02 (03) ◽  
pp. 35-38
Author(s):  
Kamala Arastun Sadigov ◽  

The presented article provides seed propagation, seedling morphology and growth dynamics, root system development in connection with the introduction of Hippophae rhamnoides L. species found in our natural flora in Absheron. The study found that the species Hippophae rhamnoides L. is well adapted to the soil and climatic conditions of Absheron and can be grown in cultural conditions. Key words: Hippophae rhamnoides L., introdiction, seed, repoduction, morphology, dewelopment, root system


Revista CERES ◽  
2018 ◽  
Vol 65 (3) ◽  
pp. 291-295 ◽  
Author(s):  
Fernando Marcelo Chiamolera ◽  
Antonio Baldo Geraldo Martins ◽  
Pedro Luiz Martins Soares ◽  
Tatiana Pagan Loeiro da Cunha-Chiamolera

ABSTRACT Root-knot nematode Meloidogyne enterolobii is the main phytosanitary problem of guava cultivation in Brazil. Among the strategies to manage the problem, the best prospects are in identifying or developing cultivars or rootstocks that are resistant to this nematode. To identify plants with potential as rootstocks for guava, the reaction of araçá (wild guava) to M. enterolobii was assessed in a greenhouse experiment. Seven araçá species were evaluated (Eugenia stipitata, Psidium acutangulum, P. cattleyanum ‘yellow’, P. friedrichsthalianum, P. guajava var. minor, P. guineense, and Psidium sp.). The plants were inoculated with a suspension of 3,000 eggs of M. enterolobii, using eggplant as control treatment. The parameters fresh root mass, number of eggs and second stage juveniles (J2) per root system, the reproduction factor (RF = Pf/Pi), and araçá reaction were determined during the experiment. RF of the araçá species E. stipitata, P. cattleyanum ‘yellow’, and P. friedrichsthalianum was less than one (RP < 1), therefore resistant to M. enterolobii. The araçá trees had good root system development and the susceptible plants showed many root galls, high number of eggs and J2, and Fusarium solani and Rhizoctonia solani root rot. The araçá species, P. cattleyanum ‘yellow’, P. friedrichsthalianum, and E. stipitata are resistant to M. enterolobii and can be tested as potential guava rootstocks.


Root Research ◽  
2013 ◽  
Vol 22 (3) ◽  
pp. 111-118
Author(s):  
Shigenori Morita ◽  
Nobuhito Sekiya ◽  
Jun Abe

2019 ◽  
pp. 1375-1382
Author(s):  
Tulio Martinez Santos ◽  
Edna Maria Bonfim Silva ◽  
Tonny José Araújo da Silva ◽  
Ana Paula Alves Barreto Damasceno

Soil compaction is a big limitation to food production in agriculture. Wood ash is an agro-industrial residue generated by the burning of biomass in boilers for energy production. It can be used as a corrective agent and fertilizer of the soil. In this context, the objective of this study was to evaluate the root system of safflower cultivated under bulk density levels and wood ash doses in dystrophic Oxisol. The experiment was conducted in a greenhouse with a randomized block design under a 5x5 factorial scheme composed of 5 wood ash doses (0, 8, 16, 24, 32 g dm-3) and 5 bulk density levels (1.0, 1.2, 1.4, 1.6, 1.8 Mg m-3) with 4 replicates. The soil was collected from 0-0.20 m depth layer. Later it was incubated with the respective wood ash doses. Each experimental unit consisted of a pot made of three PVC (polyvinyl chloride) rings, in which the layers of 0.1-0.2 m were compacted. At 75 days after emergence, the plants were cut, their roots washed and the volume and dry mass checked. The results were submitted to analysis of variance and subsequent regression test, both at 5% probability. Soil densities negatively influenced the root system development and culture of safflower. Application of wood ash doses of 20 to 24 g dm-3 significantly improved root development of plant.


Sign in / Sign up

Export Citation Format

Share Document