scholarly journals Small Molecules Targeting the Disordered Transactivation Domain of the Androgen Receptor Induce the Formation of Collapsed Helical States

2021 ◽  
Author(s):  
Jiaqi Zhu ◽  
Xavier Salvatella ◽  
Paul Robustelli

Castration-resistant prostate cancer (CRPC) is a lethal condition suffered by ~35% of prostate cancer patients who become resistant to existing FDA-approved drugs. Small molecules that target the intrinsically disordered N-terminal domain of the androgen receptor (AR-NTD) have shown promise in circumventing CPRC drug-resistance. A prodrug of one such compound, EPI-002, entered human trials in 2015 but was discontinued after phase I due to poor potency. The compound EPI-7170 was subsequently found to have improved potency, and a related compound entered human trials in 2020. NMR measurements have localized the strongest effects of these compounds to a transiently helical region of the disordered AR-NTD but no detailed structural or mechanistic rationale exists to explain their affinity to this region or the comparative potency of EPI-7170. Here, we utilize all-atom molecular dynamics simulations to elucidate the binding mechanisms of the small molecules EPI-002 and EPI-7170 to the disordered AR-NTD. We observe that both compounds induce the formation of collapsed helical states in the Tau-5 transactivation domain and that these bound states consist of heterogenous ensembles of interconverting binding modes. We find that EPI-7170 has a higher affinity to Tau-5 than EPI-002 and that the EPI-7170 bound ensemble contains a substantially higher population of collapsed helical states than the bound ensemble of EPI-002. We identify a network of interactions in the EPI-7170 bound ensemble that stabilize collapsed helical conformations. Our results provide atomically detailed binding mechanisms for EPI compounds consistent with NMR experiments that will prove useful for drug discovery for CRPC.

2018 ◽  
Vol 18 (7) ◽  
pp. 652-667 ◽  
Author(s):  
Raoling Ge ◽  
Xi Xu ◽  
Pengfei Xu ◽  
Lei Li ◽  
Zhiyu Li ◽  
...  

Prostate cancer is the most common carcinoma among aged males in western countries and more aggressive and lethal castration resistant prostate cancer often occurs after androgen deprivation therapy. The high expression of androgens and androgen receptor is closely related to prostate cancer. Efficient androgen receptor antagonists, such as enzalutamide and ARN-509, could be employed as potent anti-prostate cancer agents. Nevertheless, recent studies have revealed that F876L mutation in androgen receptor converts the action of enzalutamide and ARN-509 from an antagonist to agonist, so that novel strategies are urgent to address this resistance mechanism. In this review, we focus on the discussion about some novel strategies, which targets androgen receptor mainly through the degrading pathway as potential treatments for prostate cancer.


2019 ◽  
Vol 26 (33) ◽  
pp. 6053-6073 ◽  
Author(s):  
Claudia Ferroni ◽  
Greta Varchi

The Androgen Receptor (AR) pathway plays a major role in both the pathogenesis and progression of prostate cancer. In particular, AR is chiefly involved in the development of Castration-Resistant Prostate Cancer (CRPC) as well as in the resistance to the secondgeneration AR antagonist enzalutamide, and to the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Several small molecules acting as AR antagonists have been designed and developed so far, also as a result of the ability of cells expressing this molecular target to rapidly develop resistance and turn pure receptor antagonists into ineffective or event detrimental molecules. This review covers a survey of most promising classes of non-steroidal androgen receptor antagonists, also providing insights into their mechanism of action and efficacy in treating prostate cancer.


2019 ◽  
Vol 20 (9) ◽  
pp. 2066 ◽  
Author(s):  
Namrata Khurana ◽  
Suresh C. Sikka

Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.


2017 ◽  
Vol 28 (9) ◽  
pp. 2264-2271 ◽  
Author(s):  
D.E. Rathkopf ◽  
M.R. Smith ◽  
C.J. Ryan ◽  
W.R. Berry ◽  
N.D. Shore ◽  
...  

Oncogene ◽  
2021 ◽  
Author(s):  
Kaisa-Mari Launonen ◽  
Ville Paakinaho ◽  
Gianluca Sigismondo ◽  
Marjo Malinen ◽  
Reijo Sironen ◽  
...  

AbstractTreatment of prostate cancer confronts resistance to androgen receptor (AR)-targeted therapies. AR-associated coregulators and chromatin proteins hold a great potential for novel therapy targets. Here, we employed a powerful chromatin-directed proteomics approach termed ChIP-SICAP to uncover the composition of chromatin protein network, the chromatome, around endogenous AR in castration resistant prostate cancer (CRPC) cells. In addition to several expected AR coregulators, the chromatome contained many nuclear proteins not previously associated with the AR. In the context of androgen signaling in CRPC cells, we further investigated the role of a known AR-associated protein, a chromatin remodeler SMARCA4 and that of SIM2, a transcription factor without a previous association with AR. To understand their role in chromatin accessibility and AR target gene expression, we integrated data from ChIP-seq, RNA-seq, ATAC-seq and functional experiments. Despite the wide co-occurrence of SMARCA4 and AR on chromatin, depletion of SMARCA4 influenced chromatin accessibility and expression of a restricted set of AR target genes, especially those involved in cell morphogenetic changes in epithelial-mesenchymal transition. The depletion also inhibited the CRPC cell growth, validating SMARCA4’s functional role in CRPC cells. Although silencing of SIM2 reduced chromatin accessibility similarly, it affected the expression of a much larger group of androgen-regulated genes, including those involved in cellular responses to external stimuli and steroid hormone stimulus. The silencing also reduced proliferation of CRPC cells and tumor size in chick embryo chorioallantoic membrane assay, further emphasizing the importance of SIM2 in CRPC cells and pointing to the functional relevance of this potential prostate cancer biomarker in CRPC cells. Overall, the chromatome of AR identified in this work is an important resource for the field focusing on this important drug target.


Sign in / Sign up

Export Citation Format

Share Document