scholarly journals Caveolae promote successful abscission by controlling intercellular bridge tension during cytokinesis

2022 ◽  
Author(s):  
Virginia ANDRADE ◽  
Jian Bai ◽  
Neetu GUPTA ◽  
Ana-Joaquina Jimenez ◽  
Cedric Delevoye ◽  
...  

During cytokinesis, the intercellular bridge (ICB) connecting the daughter cells experiences pulling forces, which delay abscission by preventing the assembly of the ESCRT scission machinery. Abscission is thus triggered by tension release, but how ICB tension is controlled is unknown. Here, we report that caveolae, which are known to control membrane tension upon mechanical stress in interphase cells, are located at the midbody, at the abscission site and at the ICB/cell interface in dividing cells. Functionally, the loss of caveolae delays ESCRT-III recruitment during cytokinesis and impairs abscission. This is the consequence of a 2-fold increase of ICB tension measured by laser ablation, associated with a local increase in myosin II activity at the ICB/cell interface. We thus propose that caveolae buffer membrane tension and limit contractibility at the ICB to promote ESCRT-III assembly and cytokinetic abscission. Altogether, this work reveals an unexpected connection between caveolae and the ESCRT machinery and the first role of caveolae in cell division.

2013 ◽  
Vol 203 (3) ◽  
pp. 505-520 ◽  
Author(s):  
Rebecca A. Green ◽  
Jonathan R. Mayers ◽  
Shaohe Wang ◽  
Lindsay Lewellyn ◽  
Arshad Desai ◽  
...  

Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring–derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the Caenorhabditis elegans embryo. We show that abscission occurs in two stages. First, the cytoplasm in the daughter cells becomes isolated, coincident with formation of the intercellular bridge; proper progression through this stage required the septins (a midbody ring component) but not the membrane-remodeling endosomal sorting complex required for transport (ESCRT) machinery. Second, the midbody and midbody ring are released into a specific daughter cell during the subsequent cell division; this stage required the septins and the ESCRT machinery. Surprisingly, midbody microtubules were dispensable for both stages. These results delineate distinct steps during abscission and highlight the central role of the midbody ring, rather than midbody microtubules, in their execution.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3350
Author(s):  
Eleni Petsalaki ◽  
George Zachos

The abscission checkpoint contributes to the fidelity of chromosome segregation by delaying completion of cytokinesis (abscission) when there is chromatin lagging in the intercellular bridge between dividing cells. Although additional triggers of an abscission checkpoint-delay have been described, including nuclear pore defects, replication stress or high intercellular bridge tension, this review will focus only on chromatin bridges. In the presence of such abnormal chromosomal tethers in mammalian cells, the abscission checkpoint requires proper localization and optimal kinase activity of the Chromosomal Passenger Complex (CPC)-catalytic subunit Aurora B at the midbody and culminates in the inhibition of Endosomal Sorting Complex Required for Transport-III (ESCRT-III) components at the abscission site to delay the final cut. Furthermore, cells with an active checkpoint stabilize the narrow cytoplasmic canal that connects the two daughter cells until the chromatin bridges are resolved. Unsuccessful resolution of chromatin bridges in checkpoint-deficient cells or in cells with unstable intercellular canals can lead to chromatin bridge breakage or tetraploidization by regression of the cleavage furrow. In turn, these outcomes can lead to accumulation of DNA damage, chromothripsis, generation of hypermutation clusters and chromosomal instability, which are associated with cancer formation or progression. Recently, many important questions regarding the mechanisms of the abscission checkpoint have been investigated, such as how the presence of chromatin bridges is signaled to the CPC, how Aurora B localization and kinase activity is regulated in late midbodies, the signaling pathways by which Aurora B implements the abscission delay, and how the actin cytoskeleton is remodeled to stabilize intercellular canals with DNA bridges. Here, we review recent progress toward understanding the mechanisms of the abscission checkpoint and its role in guarding genome integrity at the chromosome level, and consider its potential implications for cancer therapy.


2001 ◽  
Vol 7 (S2) ◽  
pp. 582-583
Author(s):  
W. Lingle ◽  
J. Salisbury ◽  
S. Barrett ◽  
V. Negron ◽  
C. Whitehead

The centrosome is the major microtubule organizing center in most mammalian cells, and as such it determines the number, polarity, and spatial distribution of microtubules (MTs). Interphase MTs, together with actin and intermediate filaments, constitute the cell's cytoskeleton, which dynamically maintains cell polarity and tissue architecture. Interphase cells begin Gl of the cell cycle with one centrosome. During S phase, the centrosome duplicates concomitantly with DNA replication. Duplicated centrosomes usually remain in close proximity to one another until late G2, at which time they separate and then move during prophase to become the poles that organize the bipolar mitotic spindle. During the G2/M transition, interphase MTs depolymerize and a new population of highly dynamic mitotic MTs are nucleated at the spindle poles. The bipolar mitotic spindle apparatus constitutes the machinery that partitions and separates sister chromatids equally between two daughter cells.


2014 ◽  
Vol 25 (23) ◽  
pp. 3740-3748 ◽  
Author(s):  
Inna Goliand ◽  
Dikla Nachmias ◽  
Ofir Gershony ◽  
Natalie Elia

Recently the ESCRT-III filamentous complex was designated as the driving force for mammalian cell abscission, that is, fission of the intercellular membrane bridge connecting daughter cells at the end of cytokinesis. However, how ESCRT-III is activated to set on abscission has not been resolved. Here we revisit the role of the upstream canonical ESCRT players ESCRT-II and CHMP6 in abscission. Using high-resolution imaging, we show that these proteins form highly ordered structures at the intercellular bridge during abscission progression. Furthermore, we demonstrate that a truncated version of CHMP6, composed of its first 52 amino acids (CHMP6-N), arrives at the intercellular bridge, blocks abscission, and subsequently leads to cell death. This phenotype is abolished in a mutated version of CHMP6-N designed to prevent CHMP6-N binding to its ESCRT-II partner. Of interest, deleting the first 10 amino acids from CHMP6-N does not interfere with its arrival at the intercellular bridge but almost completely abolishes the abscission failure phenotype. Taken together, these data suggest an active role for ESCRT-II and CHMP6 in ESCRT-mediated abscission. Our work advances the mechanistic understanding of ESCRT-mediated membrane fission in cells and introduces an easily applicable tool for upstream inhibition of the ESCRT pathway in live mammalian cells.


1966 ◽  
Vol 29 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Mac Donald Cave

The incorporation of thymidine-H3 and lysine-H3 into human leukocyte chromosomes was studied in order to determine the temporal relationships between the syntheses of chromosomal deoxyribonucleic acid and chromosomal protein. The labeled compounds were incorporated into nuclei of interphase cells. Label from both precursors became apparent over the chromosomes of dividing cells. Incorporation of thymidine-H3 occurred during a restricted period of midinterphase (S) which was preceded by a nonsynthetic period (G1) and followed by a nonsynthetic period (G2). Incorporation of lysine-H3 into chromosomal protein occurred throughout interphase. Grain counts made over chromosomes of dividing cells revealed that the rate of incorporation of lysine-H3 into chromosomal protein differed during various periods of interphase. The rate of incorporation was diminished during G1. During early S period the rate of incorporation increased, reaching a peak in late S. The high rate continued into G2. Thymidine-H3 incorporated into DNA was distributed to mitotic chromosomes of daughter cells in a manner which has been referred to as a "semi-conservative segregation." No such semi-conservative mechanism was found to affect the distribution of lysine-H3 to the mitotic chromosomes of daughter cells. Therefore, it is concluded that synthesis of chromosomal protein and its distribution to chromosomes of daughter cells are not directly influenced by synthesis and distribution of the chromosomal DNA with which the protein is associated.


2017 ◽  
Author(s):  
Inna Goliand ◽  
Tali Dadosh ◽  
Natalie Elia

ABSTRACTThe ESCRT machinery mediates membrane fission in a verity of processes in cells. According to the proposed mechanism, ESCRT-III proteins drive membrane fission by assembling into helical filaments on membranes. Yet, ESCRT-III filaments have never been directly visualized in a cellular process that utilizes this machinery for its function. Here we used 3D STORM imaging of endogenous ESCRT-III component IST1, to describe the structural organization of ESCRT-III during mammalian cytokinetic abscission. Using this approach, ESCRT-III ring and spiral assemblies were resolved at the intercellular tube of cells undergoing abscission. Characterization of these structures indicates the ESCRT-III helical filament undergoes remodeling during abscission. This work provides the first evidence that ESCRT-III proteins assemble into helical filaments in physiological context, indicating that the ESCRT-III machine indeed derives its contractile activity through spiral assemblies. Moreover, it provides new structural information on ESCRT-III filaments, which raise new mechanistic scenarios for ESCRT driven membrane constriction.


2002 ◽  
Vol 13 (6) ◽  
pp. 1832-1845 ◽  
Author(s):  
Jurgita Matuliene ◽  
Ryoko Kuriyama

CHO1 is a mammalian kinesin-like motor protein of the MKLP1 subfamily. It associates with the spindle midzone during anaphase and concentrates to a midbody matrix during cytokinesis. CHO1 was originally implicated in karyokinesis, but the invertebrate homologues of CHO1 were shown to function in the midzone formation and cytokinesis. To analyze the role of the protein in mammalian cells, we mutated the ATP-binding site of CHO1 and expressed it in CHO cells. Mutant protein (CHO1F′) was able to interact with microtubules via ATP-independent microtubule-binding site(s) but failed to accumulate at the midline of the central spindle and affected the localization of endogenous CHO1. Although the segregation of chromosomes, the bundling of midzone microtubules, and the initiation of cytokinesis proceeded normally in CHO1F′-expressing cells, the completion of cytokinesis was inhibited. Daughter cells were frequently entering interphase while connected by a microtubule-containing cytoplasmic bridge from which the dense midbody matrix was missing. Depletion of endogenous CHO1 via RNA-mediated interference also affected the formation of midbody matrix in dividing cells, caused the disorganization of midzone microtubules, and resulted in abortive cytokinesis. Thus, CHO1 may not be required for karyokinesis, but it is essential for the proper midzone/midbody formation and cytokinesis in mammalian cells.


2016 ◽  
Vol 212 (5) ◽  
pp. 499-513 ◽  
Author(s):  
Liliane Christ ◽  
Eva M. Wenzel ◽  
Knut Liestøl ◽  
Camilla Raiborg ◽  
Coen Campsteijn ◽  
...  

Cytokinetic abscission, the final stage of cell division where the two daughter cells are separated, is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. The ESCRT-III subunit CHMP4B is a key effector in abscission, whereas its paralogue, CHMP4C, is a component in the abscission checkpoint that delays abscission until chromatin is cleared from the intercellular bridge. How recruitment of these components is mediated during cytokinesis remains poorly understood, although the ESCRT-binding protein ALIX has been implicated. Here, we show that ESCRT-II and the ESCRT-II–binding ESCRT-III subunit CHMP6 cooperate with ESCRT-I to recruit CHMP4B, with ALIX providing a parallel recruitment arm. In contrast to CHMP4B, we find that recruitment of CHMP4C relies predominantly on ALIX. Accordingly, ALIX depletion leads to furrow regression in cells with chromosome bridges, a phenotype associated with abscission checkpoint signaling failure. Collectively, our work reveals a two-pronged recruitment of ESCRT-III to the cytokinetic bridge and implicates ALIX in abscission checkpoint signaling.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009757
Author(s):  
Chiara Merigliano ◽  
Romina Burla ◽  
Mattia La Torre ◽  
Simona Del Giudice ◽  
Hsiangling Teo ◽  
...  

To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission.


2020 ◽  
Author(s):  
Chiara Merigliano ◽  
Romina Burla ◽  
Mattia La Torre ◽  
Simona Del Giudice ◽  
Hsiang Ling Teo ◽  
...  

AbstractTo complete mitosis, the intercellular bridge that links daughter cells needs to be cleaved. This abscission step is carried out by the sequential recruitment of ESCRT proteins at the midbody. We report here that a new factor, named AKTIP, works in association with ESCRTs. We find that AKTIP binds to the ESCRT I subunit VPS28, and show by high resolution microscopy that AKTIP forms a ring in the dark zone of the intercellular bridge. This ring is positioned in between the circular structures formed by ESCRTs type III. Functionally, we observe that the reduction of AKTIP impinges on the recruitment of the ESCRT III member IST1 at the midbody and causes abscission defects. Taken together, these data indicate that AKTIP is a new factor that contributes to the formation of the ESCRT complex at the midbody and is implicated in the performance of the ESCRT machinery during cytokinetic abscission.


Sign in / Sign up

Export Citation Format

Share Document