scholarly journals Dissecting conformational rearrangements and allosteric modulation in metabotropic glutamate receptor activation

2022 ◽  
Author(s):  
Nathalie Lecat-Guillet ◽  
Robert B Quast ◽  
Hongkang Liu ◽  
Thor C Moller ◽  
Xavier Rovira ◽  
...  

Selective allosteric modulators bear great potential to fine-tune neurotransmitter-induced brain receptor responses. Promising targets are metabotropic glutamate (mGlu) receptors, which are associated to different brain diseases. These multidomain class C GPCRs experience concerted structural rearrangements and rely on allosteric modulation of agonist action to be fully activated. Here we establish live cell compatible fluorescence labeling of mGlu2 by click chemistry through genetic code expansion. Using lanthanide resonance energy transfer, we establish multiple FRET sensors to monitor ligand effects on conformational changes in mGlu2 extracellular domain and subsequently dissect the underlying conformational states by smFRET. Using three distinct FRET sensors, we demonstrate that mGlu activation relies on a ligand-induced sampling of three conformational states. Orthosteric agonists act by promoting the closure of the mGlu2 ligand binding domains, leading to an equilibrium between an inactive intermediate and the active state. Allosteric modulator further push this equilibrium toward the active state, promoting and stabilizing the relative reorientation of the mGlu protomers. These results underline the complex and dynamic nature of such type of neuroreceptors, pointing out that ligands fine-tune activation by differentially acting on the equilibria between multiple states.

2021 ◽  
Vol 22 (6) ◽  
pp. 3241
Author(s):  
Raudah Lazim ◽  
Donghyuk Suh ◽  
Jai Woo Lee ◽  
Thi Ngoc Lan Vu ◽  
Sanghee Yoon ◽  
...  

G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein–protein interactions (PPI).


2016 ◽  
Vol 173 (3) ◽  
pp. 588-600 ◽  
Author(s):  
Maarten L J Doornbos ◽  
Laura Pérez-Benito ◽  
Gary Tresadern ◽  
Thea Mulder-Krieger ◽  
Ilse Biesmans ◽  
...  

Nature ◽  
1995 ◽  
Vol 373 (6515) ◽  
pp. 612-615 ◽  
Author(s):  
Miles A. Whittington ◽  
Roger D. Traub ◽  
John G. R. Jefferys

Sign in / Sign up

Export Citation Format

Share Document