scholarly journals Reexamining Waddington: Canalization and new mutations are not required for the evolution of genetic assimilation

2022 ◽  
Author(s):  
Sarah Ruth Marzec ◽  
Katharine Pelletier ◽  
Amy Hui-Pin Chang ◽  
Ian Dworkin

Over 65 years ago, Waddington demonstrated ancestrally phenotypically plastic traits can evolve to become constitutive, a process he termed genetic assimilation. Genetic assimilation evolves rapidly, assumed to be in large part due to segregating genetic variation only expressed in rare/novel environments, but otherwise phenotypically cryptic. Despite previous work suggesting a substantial role of cryptic genetic variation contributing to the evolution of genetic assimilation, some have argued for a prominent role for new mutations of large effect concurrent with selection. Interestingly, Waddington was less concerned by the relative contribution of CGV or new variants, but aimed to test the role of canalization, an evolved form of robustness. While canalization has been extensively studied, its role in the evolution of genetic assimilation is disputed, in part because explicit tests of evolved robustness are lacking. To address these questions, we recreated Waddington's selection experiments on an environmentally sensitive change in Drosophila wing morphology (crossvein development), using many independently evolved replicate lineages. Using these, we show that 1) a polygenic CGV, but not new variants of large effect are largely responsible for the evolved response demonstrated using both genomic and genetic approaches. 2) Using both environmental manipulations and mutagenesis of the evolved lineages that there is no evidence for evolved changes in canalization contributing to genetic assimilation. Finally, we demonstrate that 3) CGV has potentially pleiotropic and fitness consequences in natural populations and may not be entirely cryptic.

2019 ◽  
Author(s):  
Charlotte E Regan ◽  
Josephine M Pemberton ◽  
Jill G Pilkington ◽  
Per T Smiseth ◽  
Alastair J Wilson

Abstract Wild quantitative genetic studies have focused on a subset of traits (largely morphological and life history), with others, such as behaviors, receiving much less attention. This is because it is challenging to obtain sufficient data, particularly for behaviors involving interactions between individuals. Here, we explore an indirect approach for pilot investigations of the role of genetic differences in generating variation in parental care. Variation in parental genetic effects for offspring performance is expected to arise from among-parent genetic variation in parental care. Therefore, we used the animal model to predict maternal breeding values for lamb growth and used these predictions to select females for field observation, where maternal and lamb behaviors were recorded. Higher predicted maternal breeding value for lamb growth was associated with greater suckling success, but not with any other measures of suckling behavior. Though our work cannot explicitly estimate the genetic basis of the specific traits involved, it does provide a strategy for hypothesis generation and refinement that we hope could be used to justify data collection costs needed for confirmatory studies. Here, results suggest that behavioral genetic variation is involved in generating maternal genetic effects on lamb growth in Soay sheep. Though important caveats and cautions apply, our approach may extend the ability to initiate more genetic investigations of difficult-to-study behaviors and social interactions in natural populations.


2017 ◽  
Author(s):  
Sudarshan Chari ◽  
Christian Marier ◽  
Cody Porter ◽  
Emmalee Northrop ◽  
Alexandra Belinky ◽  
...  

AbstractPopulations are constantly exposed to deleterious alleles, most of which are purged via natural selection. However, deleterious fitness effects of alleles can also be suppressed by compensatory adaptation. Compensatory mutations can act directly to reduce deleterious effects of an allele. Alternatively, compensation may also occur by altering other aspects of an organisms’ phenotype or performance, without suppressing the phenotypic effects of the deleterious allele. Moreover, the origin of allelic variation contributing to compensatory adaptation remains poorly understood. Compensatory evolution driven by mutations that arise during the selective process are well studied. However less is known about the role standing (cryptic) genetic variation plays in compensatory adaptation. To address these questions, we examined evolutionary trajectories of natural populations of Drosophila melanogaster fixed for mutations that disrupt wing morphology, resulting in deleterious effects on several components of fitness. Lineages subjected only to natural selection, evolved modifications to courtship behavior and several life history traits without compensation in wing morphology. Yet, we observed rapid phenotypic compensation of wing morphology under artificial selection, consistent with segregating variation for compensatory alleles. We show that alleles contributing to compensation of wing morphology have deleterious effects on other fitness components. These results demonstrate the potential for multiple independent avenues for rapid compensatory adaptation from standing genetic variation, which ultimately may reveal novel adaptive trajectories.


2010 ◽  
Vol 151 (34) ◽  
pp. 1376-1383 ◽  
Author(s):  
Mariann Harangi ◽  
István Balogh ◽  
János Harangi ◽  
György Paragh

A Niemann–Pick C1-like-1 egy szterolfelismerő domént tartalmazó membránfehérje, amelyet nagy számban expresszálnak csúcsi felszínükön a bélhámsejtek. Az utóbbi évek vizsgálatai azt igazolták, hogy ez a fehérje szükséges a szabad koleszterin bejutásához a bélhámsejtekbe a bél lumenéből. Biokémiai vizsgálatok azt igazolták, hogy a Niemann–Pick C1-like-1-hez kötődik az ezetimib, amely egy hatékony koleszterinfelszívódást gátló szer. A bélből történő koleszterinfelszívódás ütemében és az ezetimibkezelés hatékonyságában tapasztalt egyéni eltérések hátterében felmerült néhány Niemann–Pick C1-like-1 génvariáció oki szerepe.


Author(s):  
Elisa M. Trucco ◽  
Gabriel L. Schlomer ◽  
Brian M. Hicks

Approximately 48–66% of the variation in alcohol use disorders is heritable. This chapter provides an overview of the genetic influences that contribute to alcohol use disorder within a developmental perspective. Namely, risk for problematic alcohol use is framed as a function of age-related changes in the relative contribution of genetic and environmental factors and an end state of developmental processes. This chapter discusses the role of development in the association between genes and the environment on risk for alcohol use disorder. Designs used to identify genetic factors relevant to problematic alcohol use are discussed. Studies examining developmental pathways to alcohol use disorder with a focus on endophenotypes and intermediate phenotypes are reviewed. Finally, areas for further investigation are offered.


Author(s):  
Flavia Fabris

This chapter reappraises Waddington’s processual theory of epigenetics and examines its implications for contemporary evolutionary biology. It focuses in particular on the ontological difference between two conflicting assumptions that have been conflated in the recent debate over the nature of cryptic variability: a substance view that is consistent with the modern synthesis and construes variability as a preexisting pool of random genetic variation; and a processual view, which derives from Waddington’s conception of developmental canalization and understands variability as an epigenetic process. The chapter also discusses how these opposing interpretations fare in their capacity to explain the genetic assimilation of acquired characters.


Genetics ◽  
1975 ◽  
Vol 80 (4) ◽  
pp. 785-805
Author(s):  
P T Spieth

ABSTRACT Electrophoretically detectable variation in the fungus Neurospora intermedia has been surveyed among isolates from natural populations in Malaya, Papua, Australia and Florida. The principal result is a pattern of genetic variation within and between populations that is qualitatively no different than the well documented patterns for Drosophila and humans. In particular, there is a high level of genetic variation, the majority of which occurs at the level of local populations. Evidence is presented which argues that N. intermedia has a population structure analogous to that of an annual vascular plant with a high level of vegetative reproduction. Sexual reproduction appears to be a regular feature in the biology of the species. Substantial heterokaryon function seems unlikely in natural populations of N. intermedia. Theoretical considerations concerning the mechanisms underlying the observed pattern of variation most likely should be consistent with haploid selection theory. The implications of this constraint upon the theory are discussed in detail, leading to the presentation of a model based upon the concept of environmental heterogeneity. The essence of the model, which is equally applicable to haploid and diploid situations, is a shifting distribution of multiple adaptive niches among local populations such that a given population has a small net selective pressure in favor of one allele or another, depending upon its particular distribution of niches. Gene flow among neighboring populations with differing net selective pressures is postulated as the principal factor underlying intrapopulational allozyme variation.


2021 ◽  
Vol 9 (6) ◽  
pp. 1242
Author(s):  
Loganathan Ponnusamy ◽  
Haley Sutton ◽  
Robert D. Mitchell ◽  
Daniel E. Sonenshine ◽  
Charles S. Apperson ◽  
...  

The transovarial transmission of tick-borne bacterial pathogens is an important mechanism for their maintenance in natural populations and transmission, causing disease in humans and animals. The mechanism for this transmission and the possible role of tick hormones facilitating this process have never been studied. Injections of physiological levels of the tick hormone, 20-hydroxyecdysone (20E), into part-fed (virgin) adult females of the American dog tick, Dermacentor variabilis, attached to the host caused a reduction in density of Rickettsia montanensis in the carcass and an increase in the ovaries compared to buffer-injected controls. This injection initiates yolk protein synthesis and uptake by the eggs but has no effect on blood feeding. Francisella sp. and R. montanensis were the predominant bacteria based on the proportionality in the carcass and ovary. The total bacteria load increased in the carcass and ovaries, and bacteria in the genus Pseudomonas increased in the carcass after the 20E injection. The mechanism of how the Rickettsia species respond to changes in tick hormonal regulation needs further investigation. Multiple possible mechanisms for the proliferation of R. montanensis in the ovaries are proposed.


Sign in / Sign up

Export Citation Format

Share Document