scholarly journals GR-regulated enhancers play a central role in the gene regulatory networks underlying drug addiction

2022 ◽  
Author(s):  
Sascha Duttke ◽  
Patricia Montilla-Perez ◽  
Max W Chang ◽  
Hairi Li ◽  
Hao Chen ◽  
...  

Substance abuse and addiction represent a major public health problem that impacts multiple dimensions of society, including healthcare, economy, and workforce. In 2021, over 100,000 drug overdose deaths have been reported in the US with an alarming increase in fatalities related to opioids and psychostimulants. Understanding of the fundamental gene regulatory mechanisms underlying addiction and related behaviors could facilitate more effective treatments. To explore how repeated drug exposure alters gene regulatory networks in the brain, we combined capped small (cs)RNA-seq, which accurately captures nascent-like initiating transcripts from total RNA, with Hi-C and single nuclei (sn)ATAC-seq. We profiled initiating transcripts in two addiction-related brain regions, the prefrontal cortex (PFC) and the nucleus accumbens (NAc), from rats that were never exposed to drugs or were subjected to prolonged abstinence after oxycodone or cocaine intravenous self-administration (IVSA). Interrogating over 100,000 active transcription start regions (TSRs) revealed that most TSRs had hallmarks of bona-fide enhancers and highlighted the KLF/SP1, RFX and AP1 transcription factors families as central to establish brain-specific gene regulatory programs. Analysis of rats with addiction-like behaviors versus controls identified addiction-associated repression of transcription at regulatory enhancers recognized by nuclear receptor subfamily 3 group C (NR3C) factors, which include glucocorticoid receptors. Cell-type deconvolution analysis using snATAC-seq uncovered a potential role of glial cells in driving the gene regulatory programs associated with addiction-related phenotypes. These findings highlight the power of advanced transcriptomics methods to provide insight into how addiction perturbs gene regulatory programs in the brain.

2018 ◽  
Vol 25 (2) ◽  
pp. 130-145 ◽  
Author(s):  
Heewon Park ◽  
Teppei Shimamura ◽  
Seiya Imoto ◽  
Satoru Miyano

2019 ◽  
Vol 36 (1) ◽  
pp. 197-204 ◽  
Author(s):  
Xin Zhou ◽  
Xiaodong Cai

Abstract Motivation Gene regulatory networks (GRNs) of the same organism can be different under different conditions, although the overall network structure may be similar. Understanding the difference in GRNs under different conditions is important to understand condition-specific gene regulation. When gene expression and other relevant data under two different conditions are available, they can be used by an existing network inference algorithm to estimate two GRNs separately, and then to identify the difference between the two GRNs. However, such an approach does not exploit the similarity in two GRNs, and may sacrifice inference accuracy. Results In this paper, we model GRNs with the structural equation model (SEM) that can integrate gene expression and genetic perturbation data, and develop an algorithm named fused sparse SEM (FSSEM), to jointly infer GRNs under two conditions, and then to identify difference of the two GRNs. Computer simulations demonstrate that the FSSEM algorithm outperforms the approaches that estimate two GRNs separately. Analysis of a dataset of lung cancer and another dataset of gastric cancer with FSSEM inferred differential GRNs in cancer versus normal tissues, whose genes with largest network degrees have been reported to be implicated in tumorigenesis. The FSSEM algorithm provides a valuable tool for joint inference of two GRNs and identification of the differential GRN under two conditions. Availability and implementation The R package fssemR implementing the FSSEM algorithm is available at https://github.com/Ivis4ml/fssemR.git. It is also available on CRAN. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 18 (05) ◽  
pp. 2050029
Author(s):  
Xiao Yu ◽  
Tongfeng Weng ◽  
Changgui Gu ◽  
Huijie Yang

Lymphoma is the most complicated cancer that can be divided into several tens of subtypes. It may occur in any part of body that has lymphocytes, and is closely correlated with diverse environmental factors such as the ionizing radiation, chemocarcinogenesis, and virus infection. All the environmental factors affect the lymphoma through genes. Identifying pathogenic genes for lymphoma is consequently an essential task to understand its complexity in a unified framework. In this paper, we propose a new method to expose high-confident edges in gene regulatory networks (GRNs) for a total of 32 organs, called Filtered GRNs (f-GRNs), comparison of which gives us a proper reference for the Lymphoma, i.e. the B-lymphocytes cells, whose f-GRN is closest with that for the Lymphoma. By using the Gene Ontology and Biological Process analysis we display the differences of the two networks’ hubs in biological functions. Matching with the Genecards shows that most of the hubs take part in the genetic information transmission and expression, except a specific gene of Retinoic Acid Receptor Alpha (RARA) that encodes the retinoic acid receptor. In the lymphoma, the genes in the RARA ego-network are involved in two cancer pathways, and the RARA is present only in these cancer pathways. For the lymphoid B cells, however, the genes in the RARA ego-network do not participate in cancer-related pathways.


2011 ◽  
Vol 28 (2) ◽  
pp. 214-221 ◽  
Author(s):  
Geert Geeven ◽  
Ronald E. van Kesteren ◽  
August B. Smit ◽  
Mathisca C. M. de Gunst

2017 ◽  
Vol 39 (3) ◽  
pp. 407-417 ◽  
Author(s):  
Dimple Chudasama ◽  
Valeria Bo ◽  
Marcia Hall ◽  
Vladimir Anikin ◽  
Jeyarooban Jeyaneethi ◽  
...  

2021 ◽  
Author(s):  
Deborah Weighill ◽  
Marouen Ben Guebila ◽  
Kimberly Glass ◽  
John Quackenbush ◽  
John Platig

AbstractThe majority of disease-associated genetic variants are thought to have regulatory effects, including the disruption of transcription factor (TF) binding and the alteration of downstream gene expression. Identifying how a person’s genotype affects their individual gene regulatory network has the potential to provide important insights into disease etiology and to enable improved genotype-specific disease risk assessments and treatments. However, the impact of genetic variants is generally not considered when constructing gene regulatory networks. To address this unmet need, we developed EGRET (Estimating the Genetic Regulatory Effect on TFs), which infers a genotype-specific gene regulatory network (GRN) for each individual in a study population by using message passing to integrate genotype-informed TF motif predictions - derived from individual genotype data, the predicted effects of variants on TF binding and gene expression, and TF motif predictions - with TF protein-protein interactions and gene expression. Comparing EGRET networks for two blood-derived cell lines identified genotype-associated cell-line specific regulatory differences which were subsequently validated using allele-specific expression, chromatin accessibility QTLs, and differential TF binding from ChIP-seq. In addition, EGRET GRNs for three cell types across 119 individuals captured regulatory differences associated with disease in a cell-type-specific manner. Our analyses demonstrate that EGRET networks can capture the impact of genetic variants on complex phenotypes, supporting a novel fine-scale stratification of individuals based on their genetic background. EGRET is available through the Network Zoo R package (netZooR v0.9; netzoo.github.io).


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244864
Author(s):  
Carlos Mora-Martinez

Large amounts of effort have been invested in trying to understand how a single genome is able to specify the identity of hundreds of cell types. Inspired by some aspects of Caenorhabditis elegans biology, we implemented an in silico evolutionary strategy to produce gene regulatory networks (GRNs) that drive cell-specific gene expression patterns, mimicking the process of terminal cell differentiation. Dynamics of the gene regulatory networks are governed by a thermodynamic model of gene expression, which uses DNA sequences and transcription factor degenerate position weight matrixes as input. In a version of the model, we included chromatin accessibility. Experimentally, it has been determined that cell-specific and broadly expressed genes are regulated differently. In our in silico evolved GRNs, broadly expressed genes are regulated very redundantly and the architecture of their cis-regulatory modules is different, in accordance to what has been found in C. elegans and also in other systems. Finally, we found differences in topological positions in GRNs between these two classes of genes, which help to explain why broadly expressed genes are so resilient to mutations. Overall, our results offer an explanatory hypothesis on why broadly expressed genes are regulated so redundantly compared to cell-specific genes, which can be extrapolated to phenomena such as ChIP-seq HOT regions.


Science ◽  
2020 ◽  
Vol 370 (6519) ◽  
pp. eabb8598 ◽  
Author(s):  
Thanh Hoang ◽  
Jie Wang ◽  
Patrick Boyd ◽  
Fang Wang ◽  
Clayton Santiago ◽  
...  

Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin accessibility in Müller glia from zebrafish, chick, and mice in response to different stimuli. We identified evolutionarily conserved and species-specific gene networks controlling glial quiescence, reactivity, and neurogenesis. In zebrafish and chick, the transition from quiescence to reactivity is essential for retinal regeneration, whereas in mice, a dedicated network suppresses neurogenic competence and restores quiescence. Disruption of nuclear factor I transcription factors, which maintain and restore quiescence, induces Müller glia to proliferate and generate neurons in adult mice after injury. These findings may aid in designing therapies to restore retinal neurons lost to degenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document