scholarly journals Inference of differential gene regulatory networks based on gene expression and genetic perturbation data

2019 ◽  
Vol 36 (1) ◽  
pp. 197-204 ◽  
Author(s):  
Xin Zhou ◽  
Xiaodong Cai

Abstract Motivation Gene regulatory networks (GRNs) of the same organism can be different under different conditions, although the overall network structure may be similar. Understanding the difference in GRNs under different conditions is important to understand condition-specific gene regulation. When gene expression and other relevant data under two different conditions are available, they can be used by an existing network inference algorithm to estimate two GRNs separately, and then to identify the difference between the two GRNs. However, such an approach does not exploit the similarity in two GRNs, and may sacrifice inference accuracy. Results In this paper, we model GRNs with the structural equation model (SEM) that can integrate gene expression and genetic perturbation data, and develop an algorithm named fused sparse SEM (FSSEM), to jointly infer GRNs under two conditions, and then to identify difference of the two GRNs. Computer simulations demonstrate that the FSSEM algorithm outperforms the approaches that estimate two GRNs separately. Analysis of a dataset of lung cancer and another dataset of gastric cancer with FSSEM inferred differential GRNs in cancer versus normal tissues, whose genes with largest network degrees have been reported to be implicated in tumorigenesis. The FSSEM algorithm provides a valuable tool for joint inference of two GRNs and identification of the differential GRN under two conditions. Availability and implementation The R package fssemR implementing the FSSEM algorithm is available at https://github.com/Ivis4ml/fssemR.git. It is also available on CRAN. Supplementary information Supplementary data are available at Bioinformatics online.

2018 ◽  
Author(s):  
Xin Zhou ◽  
Xiaodong Cai

AbstractMotivationGene regulatory networks (GRNs) of the same organism can be different under different conditions, although the overall network structure may be similar. Understanding the difference in GRNs under different conditions is important to understand condition-specific gene regulation. When gene expression and other relevant data under two different conditions are available, they can be used by an existing network inference algorithm to estimate two GRNs separately, and then to identify the difference between the two GRNs. However, such an approach does not exploit the similarity in two GRNs, and may sacrifice inference accuracy.ResultsIn this paper, we model GRNs with the structural equation model (SEM) that can integrate gene expression and genetic perturbation data, and develop an algorithm named fused sparse SEM (FSSEM), to jointly infer GRNs under two conditions, and then to identify difference of the two GRNs. Computer simulations demonstrate that the FSSEM algorithm outperforms the approach that estimates two GRNs separately. Analysis of a gene expression and SNP dataset of lung cancer and normal lung tissues with FSSEM inferred a GRN largely agree with the known lung GRN reported in the literature, and it identified a differential GRN, whose genes with largest degrees were reported to be implicated in lung cancer. The FSSEM algorithm provides a valuable tool for joint inference of two GRNs and identification of the differential GRN under two conditions.AvailabilityThe software package for the FSSEM algorithm is available at https://github.com/Ivis4ml/[email protected]


2011 ◽  
Vol 28 (2) ◽  
pp. 214-221 ◽  
Author(s):  
Geert Geeven ◽  
Ronald E. van Kesteren ◽  
August B. Smit ◽  
Mathisca C. M. de Gunst

2021 ◽  
Author(s):  
Deborah Weighill ◽  
Marouen Ben Guebila ◽  
Kimberly Glass ◽  
John Quackenbush ◽  
John Platig

AbstractThe majority of disease-associated genetic variants are thought to have regulatory effects, including the disruption of transcription factor (TF) binding and the alteration of downstream gene expression. Identifying how a person’s genotype affects their individual gene regulatory network has the potential to provide important insights into disease etiology and to enable improved genotype-specific disease risk assessments and treatments. However, the impact of genetic variants is generally not considered when constructing gene regulatory networks. To address this unmet need, we developed EGRET (Estimating the Genetic Regulatory Effect on TFs), which infers a genotype-specific gene regulatory network (GRN) for each individual in a study population by using message passing to integrate genotype-informed TF motif predictions - derived from individual genotype data, the predicted effects of variants on TF binding and gene expression, and TF motif predictions - with TF protein-protein interactions and gene expression. Comparing EGRET networks for two blood-derived cell lines identified genotype-associated cell-line specific regulatory differences which were subsequently validated using allele-specific expression, chromatin accessibility QTLs, and differential TF binding from ChIP-seq. In addition, EGRET GRNs for three cell types across 119 individuals captured regulatory differences associated with disease in a cell-type-specific manner. Our analyses demonstrate that EGRET networks can capture the impact of genetic variants on complex phenotypes, supporting a novel fine-scale stratification of individuals based on their genetic background. EGRET is available through the Network Zoo R package (netZooR v0.9; netzoo.github.io).


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244864
Author(s):  
Carlos Mora-Martinez

Large amounts of effort have been invested in trying to understand how a single genome is able to specify the identity of hundreds of cell types. Inspired by some aspects of Caenorhabditis elegans biology, we implemented an in silico evolutionary strategy to produce gene regulatory networks (GRNs) that drive cell-specific gene expression patterns, mimicking the process of terminal cell differentiation. Dynamics of the gene regulatory networks are governed by a thermodynamic model of gene expression, which uses DNA sequences and transcription factor degenerate position weight matrixes as input. In a version of the model, we included chromatin accessibility. Experimentally, it has been determined that cell-specific and broadly expressed genes are regulated differently. In our in silico evolved GRNs, broadly expressed genes are regulated very redundantly and the architecture of their cis-regulatory modules is different, in accordance to what has been found in C. elegans and also in other systems. Finally, we found differences in topological positions in GRNs between these two classes of genes, which help to explain why broadly expressed genes are so resilient to mutations. Overall, our results offer an explanatory hypothesis on why broadly expressed genes are regulated so redundantly compared to cell-specific genes, which can be extrapolated to phenomena such as ChIP-seq HOT regions.


Author(s):  
Anastasiya Belyaeva ◽  
Chandler Squires ◽  
Caroline Uhler

Abstract Summary Designing interventions to control gene regulation necessitates modeling a gene regulatory network by a causal graph. Currently, large-scale gene expression datasets from different conditions, cell types, disease states, and developmental time points are being collected. However, application of classical causal inference algorithms to infer gene regulatory networks based on such data is still challenging, requiring high sample sizes and computational resources. Here, we describe an algorithm that efficiently learns the differences in gene regulatory mechanisms between different conditions. Our difference causal inference (DCI) algorithm infers changes (i.e. edges that appeared, disappeared, or changed weight) between two causal graphs given gene expression data from the two conditions. This algorithm is efficient in its use of samples and computation since it infers the differences between causal graphs directly without estimating each possibly large causal graph separately. We provide a user-friendly Python implementation of DCI and also enable the user to learn the most robust difference causal graph across different tuning parameters via stability selection. Finally, we show how to apply DCI to single-cell RNA-seq data from different conditions and cell states, and we also validate our algorithm by predicting the effects of interventions. Availability and implementation Python package freely available at http://uhlerlab.github.io/causaldag/dci. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Leandro Murgas ◽  
Sebastian Contreras-Riquelme ◽  
J. Eduardo Martínez ◽  
Camilo Villaman ◽  
Rodrigo Santibáñez ◽  
...  

AbstractMotivationThe regulation of gene expression is a key factor in the development and maintenance of life in all organisms. This process is carried out mainly through the action of transcription factors (TFs), although other actors such as ncRNAs are involved. In this work, we propose a new method to construct Gene Regulatory Networks (GRNs) depicting regulatory events in a certain context for Drosophila melanogaster. Our approach is based on known relationships between epigenetics and the activity of transcription factors.ResultsWe developed method, Tool for Weighted Epigenomic Networks in D. melanogaster (Fly T-WEoN), which generates GRNs starting from a reference network that contains all known gene regulations in the fly. Regulations that are unlikely taking place are removed by applying a series of knowledge-based filters. Each of these filters is implemented as an independent module that considers a type of experimental evidence, including DNA methylation, chromatin accessibility, histone modifications, and gene expression. Fly T-WEoN is based on heuristic rules that reflect current knowledge on gene regulation in D. melanogaster obtained from literature. Experimental data files can be generated with several standard procedures and used solely when and if available.Fly T-WEoN is available as a Cytoscape application that permits integration with other tools, and facilitates downstream network analysis. In this work, we first demonstrate the reliability of our method to then provide a relevant application case of our tool: early development of D. melanogaster.AvailabilityFly T-WEoN, together with its step-by-step guide is available at https://[email protected]


2021 ◽  
Vol 11 (4) ◽  
pp. 20200076 ◽  
Author(s):  
Leandro Murgas ◽  
Sebastian Contreras-Riquelme ◽  
J. Eduardo Martínez-Hernandez ◽  
Camilo Villaman ◽  
Rodrigo Santibáñez ◽  
...  

The regulation of gene expression is a key factor in the development and maintenance of life in all organisms. Even so, little is known at whole genome scale for most genes and contexts. We propose a method, Tool for Weighted Epigenomic Networks in Drosophila melanogaster (Fly T-WEoN), to generate context-specific gene regulatory networks starting from a reference network that contains all known gene regulations in the fly. Unlikely regulations are removed by applying a series of knowledge-based filters. Each of these filters is implemented as an independent module that considers a type of experimental evidence, including DNA methylation, chromatin accessibility, histone modifications and gene expression. Fly T-WEoN is based on heuristic rules that reflect current knowledge on gene regulation in D. melanogaster obtained from the literature. Experimental data files can be generated with several standard procedures and used solely when and if available. Fly T-WEoN is available as a Cytoscape application that permits integration with other tools and facilitates downstream network analysis. In this work, we first demonstrate the reliability of our method to then provide a relevant application case of our tool: early development of D. melanogaster . Fly T-WEoN together with its step-by-step guide is available at https://weon.readthedocs.io .


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mika J. Välimäki ◽  
Robert S. Leigh ◽  
Sini M. Kinnunen ◽  
Alexander R. March ◽  
Ana Hernández de Sande ◽  
...  

AbstractBackgroundPharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration.MethodsTranscription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression.ResultsGATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression.ConclusionsCollectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration.


Sign in / Sign up

Export Citation Format

Share Document