scholarly journals Dynamical Latent State Computation in the Posterior Parietal Cortex

2022 ◽  
Author(s):  
Kaushik J Lakshminarasimhan ◽  
Eric Avila ◽  
Xaq Pitkow ◽  
Dora E Angelaki

Success in many real-world tasks depends on our ability to dynamically track hidden states of the world. To understand the underlying neural computations, we recorded brain activity in posterior parietal cortex (PPC) of monkeys navigating by optic flow to a hidden target location within a virtual environment, without explicit position cues. In addition to sequential neural dynamics and strong interneuronal interactions, we found that the hidden state -- monkey's displacement from the goal -- was encoded in single neurons, and could be dynamically decoded from population activity. The decoded estimates predicted navigation performance on individual trials. Task manipulations that perturbed the world model induced substantial changes in neural interactions, and modified the neural representation of the hidden state, while representations of sensory and motor variables remained stable. The findings were recapitulated by a task-optimized recurrent neural network model, suggesting that neural interactions in PPC embody the world model to consolidate information and track task-relevant hidden states.

2018 ◽  
Vol 115 (14) ◽  
pp. E3305-E3312 ◽  
Author(s):  
Xiaodong Chen ◽  
Gregory C. DeAngelis ◽  
Dora E. Angelaki

By systematically manipulating head position relative to the body and eye position relative to the head, previous studies have shown that vestibular tuning curves of neurons in the ventral intraparietal (VIP) area remain invariant when expressed in body-/world-centered coordinates. However, body orientation relative to the world was not manipulated; thus, an egocentric, body-centered representation could not be distinguished from an allocentric, world-centered reference frame. We manipulated the orientation of the body relative to the world such that we could distinguish whether vestibular heading signals in VIP are organized in body- or world-centered reference frames. We found a hybrid representation, depending on gaze direction. When gaze remained fixed relative to the body, the vestibular heading tuning of VIP neurons shifted systematically with body orientation, indicating an egocentric, body-centered reference frame. In contrast, when gaze remained fixed relative to the world, this representation changed to be intermediate between body- and world-centered. We conclude that the neural representation of heading in posterior parietal cortex is flexible, depending on gaze and possibly attentional demands.


2005 ◽  
Vol 94 (2) ◽  
pp. 1372-1384 ◽  
Author(s):  
Denis Schluppeck ◽  
Paul Glimcher ◽  
David J. Heeger

Posterior parietal cortex (PPC) is thought to play a critical role in decision making, sensory attention, motor intention, and/or working memory. Research on the PPC in non-human primates has focused on the lateral intraparietal area (LIP) in the intraparietal sulcus (IPS). Neurons in LIP respond after the onset of visual targets, just before saccades to those targets, and during the delay period in between. To study the function of posterior parietal cortex in humans, it will be crucial to have a routine and reliable method for localizing specific parietal areas in individual subjects. Here, we show that human PPC contains at least two topographically organized regions, which are candidates for the human homologue of LIP. We mapped the topographic organization of human PPC for delayed (memory guided) saccades using fMRI. Subjects were instructed to fixate centrally while a peripheral target was briefly presented. After a further 3-s delay, subjects made a saccade to the remembered target location followed by a saccade back to fixation and a 1-s inter-trial interval. Targets appeared at successive locations “around the clock” (same eccentricity, ≈30° angular steps), to produce a traveling wave of activity in areas that are topographically organized. PPC exhibited topographic organization for delayed saccades. We defined two areas in each hemisphere that contained topographic maps of the contra-lateral visual field. These two areas were immediately rostral to V7 as defined by standard retinotopic mapping. The two areas were separated from each other and from V7 by reversals in visual field orientation. However, we leave open the possibility that these two areas will be further subdivided in future studies. Our results demonstrate that topographic maps tile the cortex continuously from V1 well into PPC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Bosco ◽  
R. Breveglieri ◽  
M. Filippini ◽  
C. Galletti ◽  
P. Fattori

2006 ◽  
Vol 95 (3) ◽  
pp. 1645-1655 ◽  
Author(s):  
W. Pieter Medendorp ◽  
Herbert C. Goltz ◽  
Tutis Vilis

We used functional magnetic resonance imaging (fMRI) to investigate the role of the human posterior parietal cortex (PPC) in storing target locations for delayed double-step saccades. To do so, we exploited the laterality of a subregion of PPC that preferentially responds to the memory of a target location presented in the contralateral visual field. Using an event-related design, we tracked fMRI signal changes in this region while subjects remembered the locations of two sequentially flashed targets, presented in either the same or different visual hemifields, and then saccaded to them in sequence. After presentation of the first target, the fMRI signal was always related to the side of the visual field in which it had been presented. When the second target was added, the cortical activity depended on the respective locations of both targets but was still significantly selective for the target of the first saccade. We conclude that this region within the human posterior parietal cortex not only acts as spatial storage center by retaining target locations for subsequent saccades but is also involved in selecting the target for the first intended saccade.


2010 ◽  
Vol 104 (6) ◽  
pp. 3494-3509 ◽  
Author(s):  
Barbara Heider ◽  
Anushree Karnik ◽  
Nirmala Ramalingam ◽  
Ralph M. Siegel

Visually guided hand movements in primates require an interconnected network of various cortical areas. Single unit firing rate from area 7a and dorsal prelunate (DP) neurons of macaque posterior parietal cortex (PPC) was recorded during reaching movements to targets at variable locations and under different eye position conditions. In the eye position–varied task, the reach target was always foveated; thus eye position varied with reach target location. In the retinal-varied task, the monkey reached to targets at variable retinotopic locations while eye position was kept constant in the center. Spatial tuning was examined with respect to temporal (task epoch) and contextual (task condition) aspects, and response fields were compared. The analysis showed distinct tuning types. The majority of neurons changed their gain field tuning and retinotopic tuning between different phases of the task. Between the onset of visual stimulation and the preparatory phase (before the go signal), about one half the neurons altered their firing rate significantly. Spatial response fields during preparation and initiation epochs were strongly influenced by the task condition (eye position varied vs. retinal varied), supporting a strong role of eye position during visually guided reaching. DP neurons, classically considered visual, showed reach related modulation similar to 7a neurons. This study shows that both area 7a and DP are modulated during reaching behavior in primates. The various tuning types in both areas suggest distinct populations recruiting different circuits during visually guided reaching.


2005 ◽  
Vol 94 (1) ◽  
pp. 734-740 ◽  
Author(s):  
W. Pieter Medendorp ◽  
Herbert C. Goltz ◽  
Tutis Vilis

We used functional magnetic resonance imaging (fMRI) to investigate the role of the human posterior parietal cortex (PPC) in anti-saccades. To do so, we exploited the laterality of a subregion of the PPC for remembered target location. Using an event-related design, we tracked fMRI signal changes in this region while subjects remembered the location of a flashed target, then were instructed to plan either an anti- or pro-saccade to that location, and finally were instructed to execute the movement. At first, the region responded preferentially to the memory of a target location presented in the contralateral visual field. However, when an anti-cue specified a saccadic response into the opposite visual field, we observed a dynamic shift in cortical activity from one hemisphere to the other. This shows that this region within the human posterior parietal cortex codes the target location for an upcoming saccade, rather than the location of the remembered visual stimulus in an anti-saccade task.


2011 ◽  
Vol 23 (9) ◽  
pp. 2503-2520 ◽  
Author(s):  
Tsukasa Kamigaki ◽  
Tetsuya Fukushima ◽  
Yasushi Miyashita

Cognitive flexibility arises from our ability to shift behaviors depending on demand changes. Behavioral shifting recruits both a preparatory process for an upcoming behavior and an execution process for the actual behavior. Although neuroimaging studies have shown that several brain regions, including posterior parietal cortex (PPC) participated in each component process, it remains unresolved how such processes are implemented at the single-cell level or even whether these processes are distinctively carried out across microstructures in such regions. By recording single-unit activity from PPC of two monkeys performing an analog of the Wisconsin Card Sorting Test, we found that, in the execution process, two types of neurons exhibited activity modulation depending on whether shift was (shift trial) or was not required (nonshift trial): one type showing larger activity and the other showing smaller activity in the shift trial than in the nonshift trial. In the preparatory process, in contrast, the population activity of both types became larger in the shift trial than in the nonshift trial. The majority of both types exhibited shift-related activity modulation in both processes, whereas the remaining was specialized in the execution process. The former and the latter neurons were spatially intermingled within PPC. Significantly, when the animals performed set shifting spontaneously in prospect of a demand change, the shift-related activity modulation still emerged in both processes. We suggest that both execution and preparation signals are represented within PPC, and that these signals reflect behavioral shifting mechanisms that can be driven by either internal or external triggers.


Sign in / Sign up

Export Citation Format

Share Document