scholarly journals Outbreak of invasive wound mucormycosis in a burn unit due to multiple strains of Mucor circinelloides f. circinelloides resolved by whole genome sequencing

2017 ◽  
Author(s):  
Dea Garcia-Hermoso ◽  
Alexis Criscuolo ◽  
Soo chan Lee ◽  
Matthieu Legrand ◽  
Marc Chaouat ◽  
...  

AbstractMucorales are ubiquitous environmental molds responsible for mucormycosis in diabetic, immunocompromised, and severely burned patients. Small outbreaks of invasive wound mucormycosis (IWM) have already been reported in burn units without extensive microbiological investigations. We faced an outbreak of IWM in our center and investigated the clinical isolates with whole genome sequencing (WGS) analysis.We analyzed M. circinelloides isolates from patients in our burn unit (BU1) together with non-outbreak isolates from burn unit 2 (BU2, Paris area) and from France over a two-year period (2013-2015). For each isolate, WGS and a de novo genome assembly was performed from read data extracted from the aligned contig sequences of the reference genome (1006PhL).A total of 21 isolates were sequenced including 14 isolates from six BU1 patients. Phylogenetic classification showed that the clinical isolates clustered in four highly divergent clades. Clade1 contained at least one of the strains from the six epidemiologically-linked BU1 patients. The clinical isolates seemed specific to each patient. Two patients were infected with more than two strains from different clades suggesting that an environmental reservoir of clonally unrelated isolates was the source of contamination. Only two patients shared one strain in BU1, suggesting direct transmission or contamination with the same environmental source.WGS coupled with precise epidemiological data and analysis of several isolates per patients revealed in our study a complex situation with both potential cross-transmission and multiple contaminations with a heterogeneous pool of strains from a cryptic environmental reservoir.ImportanceInvasive wound mucormycosis (IWM) is a severe infection due to the environmental molds belonging to the order Mucorales. Severely burned patients are particularly at risk for IWM. Here, we used Whole Genome Sequencing (WGS) analysis to resolve an outbreak of IWM due to Mucor circinelloides that occurred in our hospital (BU1). We sequenced 21 clinical isolates, including 14 from BU1 and 7 unrelated isolates, and compared them to the reference genome (1006PhL). This analysis revealed that the outbreak was mainly due to multiple strains that seemed patient-specific, suggesting that the patients were more likely infected from a pool of diverse strains from the environment rather than from direct transmission between the patients. This study revealed the complexity of a Mucorales outbreak in the settings of IWM in burn patients, which has been highlighted based on whole genome sequencing and careful sampling.

mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Dea Garcia-Hermoso ◽  
Alexis Criscuolo ◽  
Soo Chan Lee ◽  
Matthieu Legrand ◽  
Marc Chaouat ◽  
...  

ABSTRACT Mucorales are ubiquitous environmental molds responsible for mucormycosis in diabetic, immunocompromised, and severely burned patients. Small outbreaks of invasive wound mucormycosis (IWM) have already been reported in burn units without extensive microbiological investigations. We faced an outbreak of IWM in our center and investigated the clinical isolates with whole-genome sequencing (WGS) analysis. We analyzed M. circinelloides isolates from patients in our burn unit (BU1, Hôpital Saint-Louis, Paris, France) together with nonoutbreak isolates from Burn Unit 2 (BU2, Paris area) and from France over a 2-year period (2013 to 2015). A total of 21 isolates, including 14 isolates from six BU1 patients, were analyzed by whole-genome sequencing (WGS). Phylogenetic classification based on de novo assembly and assembly free approaches showed that the clinical isolates clustered in four highly divergent clades. Clade 1 contained at least one of the strains from the six epidemiologically linked BU1 patients. The clinical isolates were specific to each patient. Two patients were infected with more than two strains from different clades, suggesting that an environmental reservoir of clonally unrelated isolates was the source of contamination. Only two patients from BU1 shared one strain, which could correspond to direct transmission or contamination with the same environmental source. In conclusion, WGS of several isolates per patients coupled with precise epidemiological data revealed a complex situation combining potential cross-transmission between patients and multiple contaminations with a heterogeneous pool of strains from a cryptic environmental reservoir. IMPORTANCE Invasive wound mucormycosis (IWM) is a severe infection due to environmental molds belonging to the order Mucorales. Severely burned patients are particularly at risk for IWM. Here, we used whole-genome sequencing (WGS) analysis to resolve an outbreak of IWM due to Mucor circinelloides that occurred in our hospital (BU1). We sequenced 21 clinical isolates, including 14 from BU1 and 7 unrelated isolates, and compared them to the reference genome (1006PhL). This analysis revealed that the outbreak was mainly due to multiple strains that seemed patient specific, suggesting that the patients were more likely infected from a pool of diverse strains from the environment rather than from direct transmission among them. This study revealed the complexity of a Mucorales outbreak in the settings of IWM in burn patients, which has been highlighted based on WGS combined with careful sampling.


Author(s):  
Emmanuel Lecorche ◽  
Côme Daniau ◽  
Kevin La ◽  
Faiza Mougari ◽  
Hanaa Benmansour ◽  
...  

Abstract Background Post-surgical infections due to Mycobacterium chimaera appeared as a novel nosocomial threat in 2015, with a worldwide outbreak due to contaminated heater-cooler units used in open chest surgery. We report the results of investigations conducted in France including whole genome sequencing comparison of patient and HCU isolates. Methods We sought M. chimaera infection cases from 2010 onwards through national epidemiological investigations in healthcare facilities performing cardiopulmonary bypass together with a survey on good practices and systematic heater-cooler unit microbial analyses. Clinical and HCU isolates were subjected to whole genome sequencing analyzed with regards to the reference outbreak strain Zuerich-1. Results Only two clinical cases were shown to be related to the outbreak, although 23% (41/175) heater-cooler units were declared positive for M. avium complex. Specific measures to prevent infection were applied in 89% (50/56) healthcare facilities although only 14% (8/56) of them followed the manufacturer maintenance recommendations. Whole genome sequencing comparison showed that the clinical isolates and 72% (26/36) of heater-cooler unit isolates belonged to the epidemic cluster. Within clinical isolates, 5 to 9 non-synonymous single nucleotide polymorphisms were observed, among which an in vivo mutation in a putative efflux pump gene observed in a clinical isolate obtained for one patient under antimicrobial treatment. Conclusions Cases of post-surgical M. chimaera infections were declared to be rare in France, although heater-cooler units were contaminated as in other countries. Genomic analyses confirmed the connection to the outbreak and identified specific single nucleotide polymorphisms, including one suggesting fitness evolution in vivo.


2015 ◽  
Vol 53 (4) ◽  
pp. 1144-1148 ◽  
Author(s):  
Evan McRobb ◽  
Derek S. Sarovich ◽  
Erin P. Price ◽  
Mirjam Kaestli ◽  
Mark Mayo ◽  
...  

Melioidosis, a disease of public health importance in Southeast Asia and northern Australia, is caused by the Gram-negative soil bacillusBurkholderia pseudomallei. Melioidosis is typically acquired through environmental exposure, and case clusters are rare, even in regions where the disease is endemic.B. pseudomalleiis classed as a tier 1 select agent by the Centers for Disease Control and Prevention; from a biodefense perspective, source attribution is vital in an outbreak scenario to rule out a deliberate release. Two cases of melioidosis within a 3-month period at a residence in rural northern Australia prompted an investigation to determine the source of exposure.B. pseudomalleiisolates from the property's groundwater supply matched the multilocus sequence type of the clinical isolates. Whole-genome sequencing confirmed the water supply as the probable source of infection in both cases, with the clinical isolates differing from the likely infecting environmental strain by just one single nucleotide polymorphism (SNP) each. For the first time, we report a phylogenetic analysis of genomewide insertion/deletion (indel) data, an approach conventionally viewed as problematic due to high mutation rates and homoplasy. Our whole-genome indel analysis was concordant with the SNP phylogeny, and these two combined data sets provided greater resolution and a better fit with our epidemiological chronology of events. Collectively, this investigation represents a highly accurate account of source attribution in a melioidosis outbreak and gives further insight into a frequently overlooked reservoir ofB. pseudomallei. Our methods and findings have important implications for outbreak source tracing of this bacterium and other highly recombinogenic pathogens.


2019 ◽  
Vol 17 (2) ◽  
pp. 169-182 ◽  
Author(s):  
Valentina Galata ◽  
Cédric C. Laczny ◽  
Christina Backes ◽  
Georg Hemmrich-Stanisak ◽  
Susanne Schmolke ◽  
...  

2015 ◽  
Vol 21 (2) ◽  
pp. 192.e1-192.e3 ◽  
Author(s):  
K. Hanevik ◽  
R. Bakken ◽  
H.R. Brattbakk ◽  
C.S. Saghaug ◽  
N. Langeland

2021 ◽  
Author(s):  
Einar Gabbasov ◽  
Miguel Moreno-Molina ◽  
Iñaki Comas ◽  
Maxwell Libbrecht ◽  
Leonid Chindelevitch

AbstractThe occurrence of multiple strains of a bacterial pathogen such as M. tuberculosis or C. difficile within a single human host, referred to as a mixed infection, has important implications for both healthcare and public health. However, methods for detecting it, and especially determining the proportion and identities of the underlying strains, from WGS (whole-genome sequencing) data, have been limited.In this paper we introduce SplitStrains, a novel method for addressing these challenges. Grounded in a rigorous statistical model, SplitStrains not only demonstrates superior performance in proportion estimation to other existing methods on both simulated as well as real M. tuberculosis data, but also successfully determines the identity of the underlying strains.We conclude that SplitStrains is a powerful addition to the existing toolkit of analytical methods for data coming from bacterial pathogens, and holds the promise of enabling previously inaccessible conclusions to be drawn in the realm of public health microbiology.Author summaryWhen multiple strains of a pathogenic organism are present in a patient, it may be necessary to not only detect this, but also to identify the individual strains. However, this problem has not yet been solved for bacterial pathogens processed via whole-genome sequencing. In this paper, we propose the SplitStrains algorithm for detecting multiple strains in a sample, identifying their proportions, and inferring their sequences, in the case of Mycobacterium tuberculosis. We test it on both simulated and real data, with encouraging results. We believe that our work opens new horizons in public health microbiology by allowing a more precise detection, identification and quantification of multiple infecting strains within a sample.


2016 ◽  
Vol 37 (8) ◽  
pp. 987-990 ◽  
Author(s):  
Kalisvar Marimuthu ◽  
Oon Tek Ng ◽  
Wei Xin Khong ◽  
Eryu Xia ◽  
Yik-Ying Teo ◽  
...  

Genetically distinct isolates of New Delhi metallo-β-lactamase (NDM)–producing Enterobacteriaceae were identified from the clinical cultures of 6 patients. Screening of shared-ward contacts identified 2 additional NDM-positive patients. Phylogenetic analysis proved that 1 contact was a direct transmission while the other was unrelated to the index, suggesting hidden routes of transmission.Infect Control Hosp Epidemiol 2016;37:987–990


Sign in / Sign up

Export Citation Format

Share Document